皮皮网
皮皮网

【期货交策源码】【刀塔源码】【华软源码】nv源码

时间:2025-01-18 16:01:22 来源:xset 源码

1.【Linux】CentOS配置FFmpeg与OpenCV
2.ubuntu驱动安装
3.NVIDIA显卡支持CUDA,源码什么是源码CUDA
4.OpenAI/Triton MLIR 第零章: 源码编译
5.Navigation2源码剖析:(二)启动
6.极智开发 | ubuntu源码编译gpu版ffmpeg

nv源码

【Linux】CentOS配置FFmpeg与OpenCV

       配置 CentOS 下的 FFmpeg 与 OpenCV 以充分利用 NVIDIA 显卡资源,降低 CPU 负载,源码提高开发的源码可靠性。下面是源码具体步骤。

       1、源码期货交策源码卸载原有 FFmpeg。源码这一步确保后续安装的源码 FFmpeg 版本可以正常工作。

       2、源码安装显卡驱动。源码参考教程:CentOS 7.6 安装 NVIDIA 独立显卡驱动(完整版)。源码

       3、源码安装 CUDA 与 cuDNN。源码首先访问 CUDA 网站,源码根据系统版本选择合适的源码 CUDA 版本进行下载。在终端执行安装命令,验证是否成功安装 CUDA。接下来,按照 cuDNN 官网指引下载对应版本的压缩包,解压后将文件复制至指定目录并赋予执行权限。

       4、安装 FFmpeg 的依赖。使用终端命令编译安装 nv-codec-headers,并将其加入 pkg-config。

       5、安装 FFmpeg。下载 FFmpeg 6.1 版本,使用终端执行安装命令。完成后,将其加入系统路径并验证 NVENC 和 NVDEC 编解码器是否成功安装。

       6、安装 OpenCV 的依赖。这部分通常无需额外安装,OpenCV 在构建过程中会自动检测并使用系统中的依赖。

       7、安装 OpenCV。下载 OpenCV 4.8.0 源码,解压后进入目录,通过终端执行构建命令安装。

       8、解除硬核编码并发限制(仅限 x 平台)。参考解决方案:解决 NVIDIA GeForce 系列显卡 NVENC 并发 Session 数目限制问题。

       通过上述步骤,可以将 CentOS 下的 FFmpeg 和 OpenCV 配置优化,充分利用 NVIDIA 显卡资源,提升视频处理效率和稳定性。

ubuntu驱动安装

       在Ubuntu系统中安装Nvidia和ATI显卡驱动的步骤如下:

       1. 首先,从Nvidia官方网站下载针对Ubuntu的驱动包,并将其保存在本地。对于Nvidia驱动,执行如下操作:

        - 完全移除原有驱动,包括Ubuntu自带的刀塔源码nv驱动和nvidia-glx-new驱动。

        - 重启并关闭xserver,使用命令:`sudo /etc/init.d/gdm stop`

        - 使用下载的驱动安装文件,例如`sudo sh ./NVIDIA-Linux-x_-..-pkg2.run`

        - 启动xserver:`sudo /etc/init.d/gdm start`

        - 若分辨率不正常,需修改`xorg.conf`,如设置Driver为'nvidia',删除相关Monitor和Screen部分的Mode设置,然后重启。

       2. 如果登录界面分辨率低,还需在个人设置中调整:`System -> Preferences -> Screen Resolutions`

       3. 对于ATI驱动,从ATI官网下载安装包,如`ati-driver-installer-8-9-x-x_.run`,执行:

        - 安装所需软件包,如`sudo apt-get install ...`

        - 进入安装包目录并运行安装命令:`sh ati-driver-installer-8-9-x.x_.run --buildpkg Ubuntu/hardy`

        - 调整`/etc/default/linux-restricted-modules-common`和`/etc/modprobe.d/blacklist-restricted`文件

        - 安装DEB包:`sudo dpkg -i xorg-driver-fglrx_*.deb`

        - 修改`xorg.conf`以使用fglrx驱动

        - 运行`aticonfig`命令并重启系统。

       4. 对于声卡配置问题,可能需要编译alsa-utils,首先卸载,然后从源码编译并配置:

        - `apt-get remove alsa-utils`

        - 从源码编译并安装:`./configure && make install`

        - 运行相关命令调整声卡设置,如`alsactl restore &`并添加到`/etc/rc.local`

       5. 最后,可能需要删除xserver-xgl并添加特定的xorg.conf扩展以确保Direct Rendering的正确设置。

       完成以上步骤后,检查Direct Rendering状态,如果显示为yes,驱动安装成功。如有问题,可以按上述流程逐个排查。

扩展资料

       Ubuntu(友帮拓)是一个以桌面应用为主的Linux操作系统,其名称来自非洲南部祖鲁语或豪萨语的“ubuntu”一词,意思是“人性”、“我的存在是因为大家的存在”,是非洲传统的一种价值观,类似华人社会的“仁爱”思想。Ubuntu基于Debian发行版和GNOME桌面环境,与Debian的不同在于它每6个月会发布一个新版本。Ubuntu的目标在于为一般用户提供一个最新的、同时又相当稳定的主要由自由软件构建而成的操作系统。Ubuntu具有庞大的社区力量,用户可以方便地从社区获得帮助。年1月3日,Ubuntu正式发布面向智能手机的移动操作系统。

NVIDIA显卡支持CUDA,什么是CUDA

       关于CUDA:

        CUDA(Compute Unified Device Architecture)是一个新的基础架构,这个架构可以使用GPU来解决商业、工业以及科学方面的复杂计算问题。它是一个完整的GPGPU解决方案,提供了硬件的直接访问接口,而不必像传统方式一样必须依赖图形API接口来实现GPU的访问。在架构上采用了一种全新的计算体系结构来使用GPU提供的硬件资源,从而给大规模的数据计算应用提供了一种比CPU更加强大的计算能力。CUDA采用C语言作为编程语言提供大量的高性能计算指令开发能力,使开发者能够在GPU的强大计算能力的基础上建立起一种效率更高的密集数据计算解决方案。

       关于NVIDIA CUDA技术

       NVIDIA CUDA技术是华软源码当今世界上唯一针对NVIDIA GPU(图形处理器)的C语言环境,为支持CUDA技术的NVIDIA GPU(图形处理器)带来无穷的图形计算处理性能。凭借NVIDIA CUDA技术,开发人员能够利用NVIDIA GPU(图形处理器)攻克极其复杂的密集型计算难题,应用到诸如石油与天然气的开发,金融风险管理,产品设计,媒体图像以及科学研究等领域。

       CUDA™ 工具包是一种针对支持CUDA功能的GPU(图形处理器)的C语言开发环境。CUDA开发环境包括:

       nvcc C语言编译器

       适用于GPU(图形处理器)的CUDA FFT和BLAS库

       分析器

       适用于GPU(图形处理器)的gdb调试器(在年3月推出alpha版)

       CUDA运行时(CUDA runtime)驱动程序(目前在标准的NVIDIA GPU驱动中也提供)

       CUDA编程手册

       CUDA开发者软件开发包(SDK)提供了一些范例(附有源代码),以帮助使用者开始CUDA编程。这些范例包括:

       并行双调排序

       矩阵乘法

       矩阵转置

       利用计时器进行性能评价

       并行大数组的前缀和(扫描)

       图像卷积

       使用Haar小波的一维DWT

       OpenGL和Direct3D图形互操作示例

       CUDA BLAS和FFT库的使用示例

       CPU-GPU C—和C++—代码集成

       二项式期权定价模型

       Black-Scholes期权定价模型

       Monte-Carlo期权定价模型

       并行Mersenne Twister(随机数生成)

       并行直方图

       图像去噪

       Sobel边缘检测滤波器

       MathWorks MATLAB® 插件 (点击这里下载)

       新的基于1.1版CUDA的SDK 范例现在也已经发布了。要查看完整的列表、下载代码,请点击此处。

       技术功能

       在GPU(图形处理器)上提供标准C编程语言

       为在支持CUDA的NVIDIA GPU(图形处理器)上进行并行计算而提供了统一的软硬件解决方案

       CUDA兼容的GPU(图形处理器)包括很多:从低功耗的笔记本上用的GPU到高性能的,多GPU的系统。

       支持CUDA的GPU(图形处理器)支持并行数据缓存和线程执行管理器

       标准FFT(快速傅立叶变换)和BLAS(基本线性代数子程序)数值程序库

       针对计算的专用CUDA驱动

       经过优化的,从中央处理器(CPU)到支持CUDA的GPU(图形处理器)的直接上传、下载通道

       CUDA驱动可与OpenGL和DirectX图形驱动程序实现互操作

       支持Linux 位/位以及Windows XP 位/位 操作系统

       为了研究以及开发语言的目的,CUDA提供对驱动程序的直接访问,以及汇编语言级的访问。

OpenAI/Triton MLIR 第零章: 源码编译

       本文旨在深入探讨开源AI项目OpenAI Triton MLIR,着重介绍Triton作为编程语言与编译器在GPU加速计算领域的应用与优化。Triton为用户提供了一种全新的方式,通过将其后端接入LLVM IR,利用NVPTX生成GPU代码,进而提升计算效率。相较于传统CUDA编程,Triton无需依赖NVIDIA的nvcc编译器,直接生成可运行的机器代码,体现出其在深度学习与数据科学领域的高性能计算潜力。Triton不仅支持NVIDIA GPU,还计划扩展至AMD与Intel GPU,其设计基于MLIR框架,通过Dialect支持多样化后端。本文将从源码编译角度出发,逐步解析Triton的设计理念与优化策略,为研究编译技术和系统优化的工程师提供宝贵资源。

       首先,需要访问Triton的官方网站,克隆其官方代码库,以便后续操作。构建过程涉及两个重要依赖:LLVM与pybind。LLVM作为Triton的核心后端,通过将高级Python代码逐步转换至LLVM IR,最终生成GPU可运行代码,体现了其在计算优化领域的优势。pybind组件则用于封装C++/CUDA或汇编代码,实现Python DSL与高性能组件的无缝集成。

       接下来,将LLVM与pybind分别编译安装,溯源码在哪通过手动配置指定路径,确保编译过程顺利进行。LLVM的安装对于基于Triton进行二次开发的工程师和研究人员至关重要,因为它为Triton提供了强大的计算基础。在特定的commit ID下编译Triton,确保与后续版本兼容。

       在编译过程中,配置pybind同样至关重要,它允许用户通过Python API调用高性能组件,实现自动化生成高性能算子。完成编译后,生成的.so文件(libtriton.so)为后续Triton的Python接口提供了支持。

       将libtriton.so移动至triton/python/triton/_C目录下,确保Python路径正确配置,实现无缝导入与调用。通过简单的import triton命令,即可开启Triton的开发之旅。验证Triton性能,可以选择tutorials目录下的示例代码,如-matrix-multiplication.py,通过运行该脚本,观察Triton在GPU上的性能表现。

       Triton在NVGPU上的成熟映射路线,从抽象的Python DSL到贴近GPU层面的IR,最终生成高效机器代码,体现了其在高性能计算领域的优越性。Triton未来的发展蓝图将支持更多前端语言,对接不同硬件厂商的硬件,实现高效映射,满足多样化计算需求。

Navigation2源码剖析:(二)启动

       Navigation2源码剖析:(二)启动

       Nv2源码中的bringup包和svl-robot-bringup负责LgSvl仿真和Nv2项目的启动,它们是整个工程的入口。

       主车设计采用两轮差分驱动,如Turtlebot3,由两个动力轮控制轮速,实现前进和转向,万向轮作为支撑。其控制模型基于开环系统,可通过添加负反馈形成闭环,以提高控制精度。

       Nv2的传感器配置包括2D激光雷达(Lidar)、深度相机和imu模块。Lidar用于建图、定位和代价地图生成,depth-camera提供障碍物信息,imu则用于里程计数据的计算和漂移校正。在Gazebo仿真中,IMU直接作为输入。

       在LGCloi中,已预置6种传感器,选择Nav2-PointCloud或Navigation2配置,秒评源码主要区别在于Lidar数据类型。为适配Nv2需求,需使用pointcloud_to_laserscan包将PointCloud2转换为LaserScan类型,这一过程涉及数据压缩和转换,如图[5]所示。

       svl-robot-bringup和nav2_bringup模块在项目启动过程中起关键作用,详细内容可参考相关附录[4]。

极智开发 | ubuntu源码编译gpu版ffmpeg

       欢迎访问极智视界公众号,获取更多深入的编程知识与实战经验分享。

       本文将带你了解在 Ubuntu 系统中,如何进行源码编译,获得 GPU 加速版本的 FFmpeg 工具。

       FFmpeg 是一款功能强大的音视频处理工具,支持多种格式的音视频文件,并提供了丰富的命令行工具和库,允许开发者在 C 语言或其他编程语言中进行音视频处理。

       然而,FFmpeg 本身并不具备 GPU 加速功能。通过集成 CUDA SDK、OpenCL 或 Vulkan 等第三方库,能够实现 FFmpeg 的 GPU 加速,显著提升处理速度和性能。

       在本文中,我们将重点介绍如何在 Ubuntu 系统中编译 GPU 加速版本的 FFmpeg。

       首先,确保已安装 nv-codec-hearers,这是 NVIDIA 提供的 SDK,用于在 GPU 上加速 FFmpeg 的操作。

       接下来,安装 FFmpeg 编码库和相关依赖,完成 FFmpeg 的编译配置。

       最后,运行编译命令,检查 FFmpeg 是否成功安装并验证 GPU 加速功能。

       至此,GPU 加速版本的 FFmpeg 已成功编译和安装,能够为你在音视频处理任务中带来显著性能提升。

       通过极智视界公众号,获得更多有关人工智能、深度学习的前沿技术与实用知识,欢迎加入知识星球,获取丰富的资源与项目源码,共同探索 AI 领域的无限可能。

Linux如何配置nVIDIA显卡驱动

       在图形芯片领域,nVidia是一个后来者,它的历史仅相当于ATi的一半。年初,NVIDIA 由 Jen-Hsun Huang,,Chris Malachowsky和 Curtis Priem 三人共同创办,但是,nVidia又一度是图形处理芯片领域的最强者,nVIDIA出品的Linux驱动安装软件工具包将自动检查计算机的各种细节,并能自动安装好各种驱动程序。这里介绍一下驱动安装、升级的简单过程。Linux系统自带的驱动程序只包括了nVIDIA 2D加速,如果需要获取更好的3D加速效果,需要安装nVIDIA专用驱动软件工具包。3D 硬件加速在需要绘制三度空间对象的时候是非常宝贵的,例如游戏、三维CAD、以及 3D 成像。本文应用环境是Red Had Enterprise Linux 4.0、nVIDIA显卡型号:华硕N/TD/M(AGP)。

       一、准备工作

       在配置nVIDIA显卡 之前, 您需要了解所安装的系统的下列信息:显示器规格,显示卡的芯片类型,显示卡的显存容量, 显示器的规格被 X 用来决定显示的分辨率和刷新率。这些规格通常可以从显示器所带的文档中, 以及制造商的网站找到。 需要知道两个数字范围:垂直刷新率和水平刷新率。 显示卡的芯片类型将决定 X 使用什么模块来驱动图形硬件。 绝大多数的硬件都能被自动检测,但是了解它在自动检测出错的时候还是很有用处的。显示卡的显存大小决定了系统支持的分辨率和颜色深度。了解这些限制非常重要。因为安装驱动程序可能需要配合核心来编译,所以会使用到内核源代码,此外,也需要编译器 ( compiler ) 的帮助,因此,先确定您的 Linux 系统当中已经下列软件的存在 :kernel-source 、kernel 、gcc 、make。 打开一个终端,使用命令检查:

       # rpm -qa | grep gcc;rpm -qa | grep make;rpm -qa | grep kernel

       如果没有3D API在开发程序时,程序员必须要了解全部的显卡特性,才能编写出与显卡完全匹配的程序,发挥出全部的显卡性能。而有了3D API这个显卡与软件直接的接口,程序员只需要编写符合接口的程序代码,就可以充分发挥显卡的不必再去了解硬件的具体性能和参数,这样就大大简化了程序开发的效率。 同样,显示芯片厂商根据标准来设计自己的硬件产品,以达到在API调用硬件资源时最优化,获得更好的性能。有了3D API,便可实现不同厂家的硬件、软件最大范围兼容。比如在最能体现3D API的游戏方面,游戏设计人员设计时,不必去考虑具体某款显卡的特性,而只是按照3D API的接口标准来开发游戏,当游戏运行时则直接通过3D API来调用显卡的硬件资源。 目前个人电脑中主要应用的3D API有DirectX和OpenGL。DirectX目前已经成为游戏的主流,市售的绝大部分主流游戏均基于DirectX开发,例如《帝国时代3》、《孤岛惊魂》、《使命召唤2》、《Half Life2》等流行的优秀游戏。而OpenGL目前则主要应用于专业的图形工作站,在游戏方面历史上也曾经和DirectX分庭抗礼,产生了一大批的优秀游戏,例如《Quake3》、《Half Life》、《荣誉勋章》的前几部、《反恐精英》等,目前在DirectX的步步进逼之下,采用OpenGL的游戏已经越来越少,但也不乏经典大作,例如基于OpenGL的《DOOM3》以及采用DOOM3引擎的《Quake4》等,无论过去还是现在,OpenGL在游戏方面的主要代表都是著名的ID Software。

       ·OpenGL

       继DirectX后,OpenGL可说是下一个最受欢迎的3D API。其实OpenGL比DirectX存在的时间更久,相对于DirectX只可以应用在微软的平台,OpenGL则可以应用在很多不同的操作系统上。目前,大多数Linux下的3D加速游戏采用的都是OpenGL,因此对于nVIDIA最新的驱动程序,只需做很小的改动就可以适于大多数的游戏。Linux下的3D API是基于OpenGL的。OpenGL是个专业的3D程序接口,是一个功能强大,调用方便的底层3D图形库。OpenGL的前身是SGI公司为其图形工作站开发的IRIS GL。IRIS GL是一个工业标准的3D图形软件接口,功能虽然强大但是移植性不好,于是SGI公司便在IRIS GL的基础上开发了OpenGL。

       OpenGL的英文全称是"Open Graphics Library",顾名思义,OpenGL便是"开放的图形程序接口"。虽然DirectX在家用市场全面领先,但在专业高端绘图领域,OpenGL是不能被取代的主角。 OpenGL是个与.硬件无关的软件接口,可以在不同的平台如Windows 、Windows NT、Unix、Linux、MacOS、OS/2之间进行移植。因此,支持OpenGL的软件具有很好的移植性,可以获得非常广泛的应用。由于OpenGL是3D图形的底层图形库,没有提供几何实体图元,不能直接用以描述场景。但是,通过一些转换程序,可以很方便地将AutoCAD、3DS等3D图形设计软件制作的DFX和3DS模型文件转换成OpenGL的顶点数组。

       OpenGL不是自由软件,它的版权、商标(OpenGL这个名字)都归SGI公司所有。但在Linux下有OpenGL的取代产品:Mesa。Mesa提供和OpenGL几乎完全一致的接口,对利用OpenGL API编程的人来说,几乎感觉不到任何差异。Mesa是遵循GPL协议(部分遵循LGPL协议)的自由软件,而且,正是由于Mesa的自由性,它在对新硬件的支持度等方面都超过了OpenGL。Mesa可以从www.mesa3d.org取得。在Linux下开发OpenGL程序,最常用的工具是GLUT(The OpenGL Utility Toolkit)。它可以创建一个或多个OpenGL窗口,响应、处理用户的交互操作、简单的弹出式菜单以及一些内置的绘图和字体处理功能。GLUT和OpenGL一样,可以移植于多种平台。由于它良好的表现,现在它已经成为Mesa发布的标准套件之一。

       ·DRI,全称 Direct Rendering Infrastructure,是 X 窗口系统里允许应用程序以一种安全有效的方式直接访问显示设备的框架。它包括对 X 服务器,某些X客户端库和内核的改动。DRI 的第一个主要应用是创建快速的 OpenGL 实现。DRI 是 XFree 4.x 以及其后继者 X.org 的组成部分,也是 Mesa -个 OpenGL API 的开源实现-的组成部分。有一些3D加速驱动是按照 DRI 标准写成的,包括 ATI,Matrox,3DFX 和 Intel。 DRI 最初是由 Precision Insight, Inc. (PI) 公司在 Red Hat Inc. 和 SGI 的合作和部分资助下开发的。随着 PI 被 VA Linux 所收购,以及后来 VA Linux 退出 Linux 领域,DRI 现在由Tungsten Graphics Inc.公司继续维护。该公司由当初 PI 公司的一些 DRI 开发者所创建。Tungsten Graphics 是目前所有 DRI 开发的焦点,许多开源开发者通过 sourceforge 上的 DRI 项目继续为 DRI 贡献代码。

       二、命令行下载安装显卡驱动

       1. 首先备份原配置文件

       使用如下命令备份Xorg的配置文件(备份的文件名为xorg.conf.bak):

       # cd /etc/X;cp ./xorg.conf ./xorg.conf.bak

       2.测试安装3D驱动前的数据

       首先测试安装3D驱动程序前的显卡速度,打开一个桌面终端运行。

       #glxgears

       glxgears是一个测试你的Linux是否可以顺利运行2D、3D的测试软件,这个程序弹出一个窗口,里面有三个转动的齿轮。屏幕将显示出每五秒钟转动多少栅,所以这是一个合理的性能测试。窗户是可以放缩的,栅数多少极大程度上依赖于窗口的大小。如果你的显示卡够好,而且你的驱动程序也配合得很好,那齿轮就跑得越快。有些极品显卡(nVIDIA GeForce GT)执行glxgears之后,快到连齿轮都看不清。这里请记录下FPS数字(每秒的帧速度)以鉴别驱动是否正常安装。 (电脑技术网站 网址:为您编辑)

       早期Linux下nVidia的显示卡驱动有一个特点:所有显示卡可以使用相同的驱动程序。现在情况有所改变:由于nVIDIA公司的产品线非常长,所以需要根据你使用的显卡芯片型号选择合适的驱动程序(官方Linux驱动网址:/object/unix.html)。截至本文写作时最新版本的驱动程序是:。适合的显卡芯片:第四代GeForce显卡芯片到 GeForce XT。另外还要中央处理器型号选择驱动类型,使用位Intel Pentium4 、Pentium D 、CeleronD 中央处理器和位的AMD中央处理器使用Linux AMD/EMT驱动程序:IAnVIDIA-Linux-x_-1.0--pkg2.run ,其他X处理器使用IA驱动程序。本文以后者为例;但是如果你使用教老的显卡芯片比如:RIVA TNT、RIVA TNT2/TNT2 Pro 、RIVA TNT2 Ultra、Vanta/Vanta LT 、RIVA TNT2 Model /Model Pro、Aladdin TNT2 、GeForce 、 GeForce DDR 、Quadro 、GeForce2 GTS/GeForce2 Pro 、GeForce2 Ti 、 GeForce2 Ultra 、 Quadro2 Pro 。请使用以前的旧版本驱动程序:如。

       3、命令行下安装过程:

       ·关闭SElinux

       使用Fedora Core 3 、Fedora Core 4、Fedora Core 5 或Red Had Enterprise Linux 4 的用户要首先关闭SElinux,方法是修改/etc/selinux/config文件中的SELINUX="" 为 disabled ,然后重启服务器。

       ·切换到命令行工作环境安装

       因为NVIDIA的显卡驱动程序安装时X服务器不能运行。使用命令或组合键"Ctrl+shift+Backspace"退出X-window,进入命令行:

       #wget /XFree/Linux-x/1.0-/NVIDIA-Linux-x-1.0--pkg1.run #init 3#.sh nVIDIA-Linux-x-1.0--pkg1.run

       run 文件可以接收许多命令行参数,下面是一些比较常见的选项:

       --info : 显示关于 .run 文件的内嵌信息并退出。

       --check : 检查档案的完整性并退出。

       --extract-only :仅解压 ./NVIDIA-Linux-x-1.0-.run但不运行。

       --help : 显示普通命令行参数的用法后退出。

       --advanced-options: 显示高级命令行参数的用法后退出。

       说明:为了截图更加清晰笔者使用远程带来工具putty登录到Linux计算机进行驱动安装。

       ·安装详细步骤:

       命令执行后是一个绿色为主的界面,询问是否接受协议件

       选择"Accept"选项接受协议开始安装

       安装完成后系统会提示是否使用nvidia-xconfig 命令更新当前配置,此时可以放心使用因为原配置是会自动备份的,选择"yes" 选项继续。

       4.检测启用Nvidia 驱动程序的"快写"(FastWrite)和"边带寻址"(Side Band Addressing) 功能。

       SBA"边带寻址",是指一种独立的地址和指令总线,图形控制芯片可以借助它来迅速地获取数据,而无需打断系统内存数据流的连续传输。为把AGP总线的传输效率与吞吐量都发挥到极致,AGP 2x协议把其中的地址总线从数据总线中单独分离了出来,在理论上是给AGP总线另添加了8条额外的边带线路。这8条额外的线路总称为边带地址端口(Sideband Address Port),简称为SBA。虽然SBA采用的是8位带宽的传输界面,但它允许图形控制芯片并行地向系统内存发出新的AGP数据请求和传输指令,同时又不干扰其他数据连续不断地通过AGP总线的主条地址数据传输线路(简称AD)。实际上,图形控制芯片也可以通过AD线路向系统内存发出新的AGP数据请求,不过这样一来,就会给AGP总线正常的数据传输增加负担,因此建议打开这8条额外的线路传输数据和指令请求。

       AGP Fast Write:即AGP快写功能,开启后可以提高AGP的传输效能,让CPU不通过主内存而直接将数据写入显示卡的显存中,提高了效率。从这两个技术的分析中,我们都可以发现,边带寻址和快写功能对显卡性能的提升都一定的帮助。

       想启用"快写"和"边带寻址"快写功能的前提是你的主板必须支持它,并且你要在 BIOS 中启用它,大部分主流主板支持。

       (1) 查看主板支持情况使用命令:"cat /proc/driver/nvidia/agp/host-bridge"

       (2) 在启用快写和边带寻址功能前请先确认你的显卡支持它。使用命令:"cat /proc/driver/nvidia/agp/card"

       (3) 如果你的显卡支持快写和边带寻址请继续做: 编辑 /etc/modules.conf加入一行:

       Options nvidia NVreg_EnableAGPSBA=1 NVreg_EnableAGPFW=1 NVreg_ReqAGPRATE=8

       (4) 重新启动计算机

       (5) 现在检查快写和边带寻址功能是启用状态(Enabled)还是禁用状态)(Disabled)。

       使用命令:"cat /proc/driver/nvidia/agp/status"

       启用"快写"和"边带寻址"可以帮助提高了虚幻竞技场, 雷神之锤3和其它第一人称视角射击游戏的 FPS数值。

       到此为止我们在命令行下完成对nVIDIA显卡的驱动安装。

更多内容请点击【休闲】专栏