【REDCARD源码】【微盘软件源码】【天天领红包源码】volatile源码原理

2025-01-18 17:01:08 来源:自动打印软件源码 分类:知识

1.内联汇编(xv6)
2.七天杀上GitHub榜首!源码原理Java并发编程深度解析实战,源码原理JUC底层原理揭秘
3.编程「锁」事|详解乐观锁 CAS 的源码原理技术原理
4.源码分析: Java中锁的种类与特性详解
5.7个连环问题揭开java多线程背后的核心原理!
6.Volatile的源码原理实现原理(看这篇就够了)

volatile源码原理

内联汇编(xv6)

       内联汇编是一种语言的内部使用汇编的方式。通常,源码原理普通语言无法直接操作寄存器,源码原理REDCARD源码而汇编代码可以。源码原理因此,源码原理内联汇编允许在特定语言(如C/C++)内部嵌入汇编代码,源码原理以提升性能。源码原理本文以C语言为例,源码原理介绍内联汇编的源码原理基本形式、扩展形式以及操作约束等内容。源码原理

       内联汇编的源码原理基本形式包括使用`asm`关键字来声明汇编表达式,并可选使用`volatile`关键字告诉编译器不进行优化。源码原理汇编代码需遵循规则,如指令需用双引号括起,指令间用`;`分隔,且双引号内指令数量不限,但需确保指令与双引号间的连续性。

       内联汇编的扩展形式添加了Output、Input和Clobber/Modify三个部分。Output部分指定汇编结果传输给C语言变量,Input部分则表示C语言数据传给汇编使用。Clobber/Modify部分则用于告知编译器可能破坏寄存器或内存数据,以便编译器提前保护。

       寄存器约束表示要求编译器使用指定寄存器进行数据传输。常见的约束包括`eax`、`ebx`等。内存约束则允许直接访问内存,无需使用寄存器作为中介。立即数约束用于指定直接数值,通常在Input部分使用。通用约束则允许使用相同的寄存器传输多个变量。

       修饰符如`=`和`+`分别用于指定变量是输入还是输出,以及是否需要更新变量。占位符如`%0`用于引用操作数,序号占位符用于编号引用,名称占位符则允许通过变量名引用。

       以上内容仅是内联汇编的简介。实际应用中,内联汇编用于实现性能敏感代码段的优化,如系统调用、微盘软件源码设备I/O操作、位操作等。使用内联汇编时,开发者需熟悉汇编语言指令集和其与C语言的交互方式,以确保代码的正确性和高效性。

       本文还介绍了xv6操作系统中使用内联汇编实现的几个功能函数,如输入输出操作、字符串处理等。这些函数通过内联汇编实现,以利用x架构的低级特性。xv6的源代码中涉及内联汇编的部分展示了如何结合C语言和汇编代码,实现特定功能的优化。

       内联汇编提供了在高阶语言中直接调用汇编代码的能力,这在处理性能敏感任务时非常有用。然而,其使用需要谨慎,因为不当的使用可能导致代码难以理解、维护和错误。在实际开发中,应权衡性能需求与代码可读性和可维护性。

       本文内容仅为内联汇编和xv6中内联汇编应用的简要介绍。若有疑问或错误之处,欢迎指正。对于希望深入学习内联汇编的开发者,建议进一步探索其在不同操作系统和编程环境中的应用案例。

七天杀上GitHub榜首!Java并发编程深度解析实战,JUC底层原理揭秘

       在多核CPU和多线程技术普及的当今,我们面对的不再是多年前对于线程开启时机的问题。如今,无论是开发人员还是技术开发者,都需要深入了解多线程技术的方方面面。本文将从操作系统原理的角度,全面解析多线程技术,涵盖基础知识到高级进阶,分享作者多年的工作经验和踩坑后的教训。

       多线程编程技术已经成为现代软件开发不可或缺的部分。然而,对于很多开发者来说,尽管有各种库和运行环境对操作系统多线程接口的封装,他们仍然面对着复杂的多线程逻辑,甚至只是天天领红包源码简单调用库的“业务”程序员。本文旨在从基础出发,深入浅出地讲解多线程技术的各个层面。

       本文分为章,从Java线程的实践及原理揭秘开始,逐步深入到synchronized实现原理、volatile解决可见性和有序性问题、J.U.C中的重入锁和读写锁、线程通信中的条件等待机制、J.U.C并发工具集实战、并发编程必备工具、阻塞队列设计原理及实现、并发安全集合原理及源码、线程池设计原理、以及Java并发编程中的异步编程特性。每一章节都基于作者的经验总结和踩坑后的教训,为读者提供全面而深入的指导。

       如果您对这份手册感兴趣并希望深入学习,欢迎您点赞并关注。获取完整内容的方式非常简单,只需点击下方链接即可。让我们一起探索多线程技术的奥秘,提升编程技能,迈向技术的高峰。

编程「锁」事|详解乐观锁 CAS 的技术原理

       本文深入探讨乐观锁的核心实现方式——CAS(Compare And Swap)技术原理。CAS是一种在多线程环境下实现同步功能的机制,相较于悲观锁的加锁操作,CAS允许在不使用锁的情况下实现多线程间的变量同步。Java的并发包中的原子类正是利用CAS实现乐观锁。

       CAS操作包含三个操作数:需要更新的内存值V、进行比较的预期数值A和要写入的值B。其逻辑是将内存值V与预期值A进行比较,当且仅当V值等于A时,通过原子方式用新值B更新V值(“比较+更新”整体是一个原子操作),否则不执行任何操作。一般情况下,更新操作会不断重试直至成功。

       以Java.util.concurrent.atomic并发包下的AtomicInteger原子整型类为例,分析其CAS底层实现机制。方法`atomicData.incrementAndGet()`内部通过Unsafe类实现。Unsafe类是底层硬件CPU指令复制工具类,关键在于compareAndSet()方法的返回结果。

       `unsafe.compareAndSwapInt(this,easypane怎么安装源码 valueOffset, expect, update)`

       此方法中,参数`this`是Unsafe对象本身,用于获取value的内存偏移地址。`valueOffset`是value变量的内存偏移地址,`expect`是期望更新的值,`update`是要更新的最新值。如果原子变量中的value值等于`expect`,则使用`update`值更新该值并返回true,否则返回false。

       至于`valueOffset`的来源,这里提到value实际上是volatile关键字修饰的变量,以保证在多线程环境下的内存可见性。

       CAS的底层是Unsafe类。如何通过`Unsafe.getUnsafe()`方法获得Unsafe类的实例?这是因为AtomicInteger类在rt.jar包下,因此通过Bootstrap根类加载器加载。Unsafe类的具体实现可以在hotspot源码中找到,而unsafe.cpp中的C++代码不在本文详细分析范围内。对CAS实现感兴趣的读者可以自行查阅。

       CAS底层的Unsafe类在多处理器上运行时,为cmpxchg指令添加lock前缀(lock cmpxchg),在单处理器上则无需此步骤(单处理器自身维护单处理器内的顺序一致性)。这一机制确保了CAS操作的原子性。

       最后,同学们会发现CAS的操作与原子性密切相关。CPU如何实现原子性操作是一个深入的话题,有机会可以继续探索。欢迎在评论区讨论,避免出现BUG!点赞转发不脱发!

源码分析: Java中锁的种类与特性详解

       在Java中存在多种锁,包括ReentrantLock、Synchronized等,它们根据特性与使用场景可划分为多种类型,如乐观锁与悲观锁、可重入锁与不可重入锁等。本文将结合源码深入分析这些锁的设计思想与应用场景。

       锁存在的意义在于保护资源,防止多线程访问同步资源时出现预期之外的错误。举例来说,当张三操作同一张银行卡进行转账,如果银行不锁定账户余额,可能会导致两笔转账同时成功,违背用户意图。会员商城系统源码因此,在多线程环境下,锁机制是必要的。

       乐观锁认为访问资源时不会立即加锁,仅在获取失败时重试,通常适用于竞争频率不高的场景。乐观锁可能影响系统性能,故在竞争激烈的场景下不建议使用。Java中的乐观锁实现方式多基于CAS(比较并交换)操作,如AQS的锁、ReentrantLock、CountDownLatch、Semaphore等。CAS类实现不能完全保证线程安全,使用时需注意版本号管理等潜在问题。

       悲观锁则始终在访问同步资源前加锁,确保无其他线程干预。ReentrantLock、Synchronized等都是典型的悲观锁实现。

       自旋锁与自适应自旋锁是另一种锁机制。自旋锁在获取锁失败时采用循环等待策略,避免阻塞线程。自适应自旋锁则根据前一次自旋结果动态调整等待时间,提高效率。

       无锁、偏向锁、轻量级锁与重量级锁是Synchronized的锁状态,从无锁到重量级锁,锁的竞争程度与性能逐渐增加。Java对象头包含了Mark Word与Klass Pointer,Mark Word存储对象状态信息,而Klass Pointer指向类元数据。

       Monitor是实现线程同步的关键,与底层操作系统的Mutex Lock相互依赖。Synchronized通过Monitor实现,其效率在JDK 6前较低,但JDK 6引入了偏向锁与轻量级锁优化性能。

       公平锁与非公平锁决定了锁的分配顺序。公平锁遵循申请顺序,非公平锁则允许插队,提高锁获取效率。

       可重入锁允许线程在获取锁的同一节点多次获取锁,而不可重入锁不允许。共享锁与独占锁是另一种锁分类,前者允许多个线程共享资源,后者则确保资源的独占性。

       本文通过源码分析,详细介绍了Java锁的种类与特性,以及它们在不同场景下的应用。了解这些机制对于多线程编程至关重要。此外,还有多种机制如volatile关键字、原子类以及线程安全的集合类等,需要根据具体场景逐步掌握。

7个连环问题揭开java多线程背后的核心原理!

       摘要:很多java入门新人一想到java多线程, 就会觉得很晕很绕,什么可见不可见的,也不了解为什么sync怎么就锁住了代码。

       很多java入门新人一想到java多线程, 就会觉得很晕很绕,什么可见不可见的,也不了解为什么sync怎么就锁住了代码。

       因此我在这里会提多个问题,如果能很好地回答这些问题,那么算是你对java多线程的原理有了一些了解,也可以借此学习一下这背后的核心原理。

       Q: java中的主内存和工作内存是指什么?

       A:java中, 主内存中的对象引用会被拷贝到各线程的工作内存中, 同时线程对变量的修改也会反馈到主内存中。

       主内存对应于java堆中的对象实例部分(物理硬件的内存)

       工作内存对应于虚拟机栈中的部分区域( 寄存器,高速缓存)

       工作内存中是拷贝的工作副本

       拷贝副本时,不会吧整个超级大的对象拷贝过来, 可能只是其中的某个基本数据类型或者引用。

       因此我们知道各线程使用内存数据时,其实是有主内存和工作内存之分的。并不是一定每次都从同一个内存里取数据。

       或者理解为大家使用数据时之间有一个缓存。

       Q: 多线程不可见问题的原因是什么?

       A:这里先讲一下虚拟机定义的内存原子操作:

       lock: 用于主内存, 把变量标识为一条线程独占的状态

       unlock : 主内存, 把锁定状态的变量释放

       read: 读取, 从主内存读到工作线程中

       load: 把read后的值放入到 工作副本中

       use: 使用工作内存变量, 传给工作引擎

       assign赋值: 把工作引擎的值传给工作内存变量

       store: 工作内存中的变量传到主内存

       write: 把值写入到主内存的变量中

       根据这些指令,看一下面这个图, 然后再看之后的流程解释,就好理解了。

       read和load、store、write是按顺序执行的, 但是中间可插入其他的操作。不可单独出现。

       assgin之后, 会同步后主内存。即只有发生过assgin,才会做工作内存同步到主内存的操作。

       新变量只能在主内存中产生

       工作内存中使用某个变量副本时,必须先经历过assign或者load操作。 不可read后马上就use

       lock操作可以被同一个线程执行多次,但相应地解锁也需要多次。

       执行lock时,会清空工作内存中该变量的值。 清空后如果要使用,必须重新做load或者assign操作

       unlock时,需要先把数据同步回主内存,再释放。

       因此多线程普通变量的读取和写入操作存在并发问题, 主要在于2点:

       只有assgin时, 才会更新主内存, 但由于指令重排序的情况,导致有时候某个assine指令先执行,然后这个提前被改变的变量就被其他线程拿走了,以至于其他线程无法及时看到更新后的内存值。

       assgin时从工作内存到主内存之间,可能存在延迟,同样会导致数据被提前取走存到工作线程中。

       Q: 那么volatile关键字为什么就可以实现可见性?可见性就是并发修改某个值后,这个值的修改对其他线程是马上可见的。

       A: java内存模型堆volatile定义了以下特殊规则:

       当一个线程修改了该变量的值时,会先lock住主存, 再立刻把新数据同步回内存。

       使用该值时,其他工作内存都要从主内存中刷新!

       这个期间会禁止对于该变量的指令重排序

       禁止指令重排序的原理是在给volatile变量赋值时,会加1个lock动作, 而前面规定的内存模型原理中, lock之后才能做load或者assine,因此形成了1个内存屏障。

       Q: 上面提到lock后会限制各工作内存要刷新主存的值load进来后才能用, 这个在底层是怎么实现的?

       A:利用了cpu的总线锁+ 缓存一致性+ 嗅探机制实现, 属于计算机组成原理部分的知识。

       这也就是为什么violate变量不能设置太多,如果设置太多,可能会引发总线风暴,造成cpu嗅探的成本大大增加。

       Q: 那给方法加上synchronized关键字的原理是什么?和volatie的区别是啥?

       A:

       synchronized的重量级锁是通过对象内部的监视器(monitor)实现

       monitor的线程互斥就是通过操作系统的mutex互斥锁实现的,而操作系统实现线程之间的切换需要从用户态到内核态的切换,所以切换成本非常高。

       每个对象都持有一个moniter对象

       具体流程如下:

       首先,class文件的方法表结构中有个访问标志access_flags, 设置ACC_SYNCHRONIZED标志来表示被设置过synchronized。

       线程在执行方法前先判断access_flags是否标记ACC_SYNCHRONIZED,如果标记则在执行方法前先去获取monitor对象。

       获取成功则执行方法代码且执行完毕后释放monitor对象

       如果获取失败则表示monitor对象被其他线程获取从而阻塞当前线程

       注意,如果是sync{ }代码块,则是通过在代码中添加monitorEnter和monitorExit指令来实现获取和退出操作的。

       如果对C语言有了解的,可以看看这个大哥些的文章Java精通并发-通过openjdk源码分析ObjectMonitor底层实现

       Q: synchronized每次加锁解锁需要切换内核态和用户态, jvm是否有对这个过程做过一些优化?

       A:jdk1.6之后, 引入了锁升级的概念,而这个锁升级就是针对sync关键字的

       锁的状态总共有四种,级别由低到高依次为:无锁、偏向锁、轻量级锁、重量级锁

       四种状态会随着竞争的情况逐渐升级,而且是不可逆的过程,只能进行锁升级(从低级别到高级别),不能锁降级(高级别到低级别)

       因此sync关键字不是一开始就直接使用很耗时的同步。而是一步步按照情况做升级

       当对象刚建立,不存在锁竞争的时候, 每次进入同步方法/代码块会直接使用偏向锁

       偏向锁原理: 每次尝试在对象头里设置当前使用这个对象的线程id, 只做一次,如果成功了就设置好threadId, 只要没有出现新的thread访问且markWord被修改,那么久)

       2. 当发现对象头的线程id要被修改时,说明存在竞争时。升级为轻量级锁

       轻量级锁采用的是自旋锁,如果同步方法/代码块执行时间很短的话,采用轻量级锁虽然会占用cpu资源但是相对比使用重量级锁还是更高效的。 CAS的对象是对象头的Mark Word, 此时仍然不会去调系统底层的方法做阻塞。

       3. 但是如果同步方法/代码块执行时间很长,那么使用轻量级锁自旋带来的性能消耗就比使用重量级锁更严重,这时候就会升级为重量级锁,也就是上面那个问题中提到的操作。

       Q: 锁只可以升级不可以降级, 确定是都不能降级吗?

       A:有可能被降级, 不可能存在共享资源竞争的锁。java存在一个运行期优化的功能需要开启server模式外加+DoEscapeAnalysis表示开启逃逸分析。

       如果运行过程中检测到共享变量确定不会逃逸,则直接在编译层面去掉锁

       举例:StringBuffer.append().append()

       例如如果发现stringBuffer不会逃逸,则就会去掉这里append所携带的同步

       而这种情况肯定只能发生在偏向锁上, 所以偏向锁可以被重置为无锁状态。

       本文分享自华为云社区,作者:breakDraw。

Volatile的实现原理(看这篇就够了)

       探讨并发编程的核心要素——原子性、可见性与有序性,Volatile作为关键角色,在多线程环境中确保了可见性与有序性,成为轻量级同步机制的代表。本文旨在全面剖析Volatile的实现原理,通过理论与实践相结合的方式,帮助读者深入理解并熟练掌握Volatile变量的正确运用。

       Volatile关键字与Java内存模型

       在深入探讨Volatile前,首先回顾Java内存模型的三要素——原子性、可见性与有序性,这是并发编程的基石。

       1. 原子性

       原子性指的是不可分割的操作,确保操作要么全成功要么全失败。例如,简单的读取与赋值操作是原子的,而复杂的操作如自增、加法等则不是。

       2. 可见性

       当一个线程修改共享变量时,其他线程能够立即访问到修改后的值。

       3. 有序性

       编译器与处理器为优化性能可能改变指令顺序,但这种重排序不影响单线程执行,却可能干扰多线程执行的正确性。

       Volatile的作用与限制

       Volatile作为类型修饰符,为共享变量赋予了两层语义:确保多线程下的可见性与禁止指令重排序。然而,它只能保证单次读写操作的原子性,对于复杂操作如自增等不适用。

       Java内存模型详解

       Java内存模型(JMM)提供了一组规则,定义了变量在主内存与工作内存中的访问方式,以实现跨平台的一致性。

       1. 变量存储在主内存

       每个线程拥有自己的工作内存,用于存储变量的副本,线程间变量传递需通过主内存同步。

       2. 独立的工作内存

       每个线程独立,其工作内存中变量的副本仅线程可见,不与其他线程共享。

       Volatile的实现原理

       Volatile通过特定的内存模型操作确保可见性与有序性,其原理基于Java内存模型的规则,通过lock、unlock、read、load等操作实现。

       1. lock

       锁定共享变量,确保线程独占。

       2. unlock

       解除锁定,其他线程有机会访问。

       3. read

       从主内存读取变量值。

       4. load

       将读取值存储到工作内存。

       5. use

       将值传递给代码执行引擎。

       6. assign

       将处理结果回写到工作内存。

       7. store

       将工作内存更新同步至主内存。

       8. write

       最终写入共享变量。

       指令规则

       Volatile通过上述操作确保多线程环境中的可见性与有序性,实现内存模型的规则。

       源码案例

       本文介绍了Volatile的实现原理,包括理论知识与源码实例,帮助读者理解其在并发编程中的应用。欲了解更多内容,欢迎访问作者主页获取视频详解与技术连载。

       ---END---

更多资讯请点击:知识

推荐资讯

聯合國報告顯示:黎巴嫩人道狀況比2006年衝突時更糟

據央視新聞報道,聯合國人道主義事務協調廳近日在最新一期報告中說,由於以色列持續空襲和轟炸,黎巴嫩如今的人道主義狀況比2006年黎巴嫩與以色列爆發大規模衝突時更嚴峻。聯合國駐黎巴嫩人道主義協調員伊姆蘭·

文章管理系统 源码_文章管理系统源码

1.网站源码怎么用?2.源代码怎么使用?网站源码怎么用? 问题一:如何使用下载的网站源码 通常下载的网站源码包含后台管理系统。不需要在本地进行修改。直接将源码上传到你的网站空间。进入后台添加文章

android彩票源码_安卓彩票源码

1.彩票开奖大全软件简介2.500WAN**客户端简介3.**中保底是什么意思4.Android吧的知名吧友5.在微信上,在QQ里都有人说不能买**,**是骗子,为什么新闻里没