皮皮网

【app链接播放器源码】【bbank源码搭建】【江湖GT源码】adbclient 源码

来源:程序源码使用 时间:2025-01-19 07:16:41

1.Android Adb 源码分析(一)
2.论坛出现 MySQL Query Error
3.Wi-Fi p2p & ap 共存
4.Android性能优化:定性和定位Android图形性能问题——以后台录屏进程为例

adbclient 源码

Android Adb 源码分析(一)

       面对Android项目的调试困境,我们的团队在项目临近量产阶段,将userdebug版本切换为了user版本,并对selinux权限进行了调整。然而,这一转变却带来了大量的app链接播放器源码bug,日志文件在/data/logs/目录下,因为权限问题无法正常pull出来,导致问题定位变得异常困难。面对这一挑战,我们尝试了两种解决方案。

       首先,我们尝试修改data目录的权限,使之成为system用户,以期绕过权限限制,然而数据目录下的logs文件仍保留了root权限,因此获取日志依然需要root权限,这并未解决问题。随后,我们找到了一个相对安全的解决办法——通过adb命令的后门机制,将获取root权限的命令修改为adb aaa.bbb.ccc.root。这一做法在一定程度上增加了后门的隐蔽性,避免了被窃取,同时对日常开发的影响也降至最低。

       在解决这一问题的过程中,我们对Android ADB的相关知识有了更深入的理解。ADB是Android系统中用于调试的工具,它主要由三部分构成:adb client、adb service和adb daemon。其中,adb client运行于主机端,提供了命令接口;adb service作为一个后台进程,位于主机端;adb daemon则是运行于设备端(实际机器或模拟器)的守护进程。这三个组件共同构成了ADB工具的完整框架,且它们的代码主要来源于system/core/adb目录,用户可以在此目录下找到adb及adbd的源代码。

       为了实现解决方案二,我们对adb的代码进行了修改,并通过Android SDK进行编译。具体步骤包括在Windows环境下编译生成adb.exe,以及在设备端编译adbd服务。需要注意的是,在进行编译前,需要先建立Android的编译环境。经过对ADB各部分关系及源代码结构的bbank源码搭建梳理,我们对ADB有了更深入的理解。

       在后续的开发过程中,我们将继续深入研究ADB代码,尤其是关于如何实现root权限的功能。如果大家觉得我们的分享有价值,欢迎关注我们的微信公众号“嵌入式Linux”,一起探索更多关于Android调试的技巧与知识。

论坛出现 MySQL Query Error

       è§£å†³æ–¹æ¡ˆå¦‚下:

       1. 进入管理mysql的phpmyadmin

       2. 在左则选中自己的数据库

       3. 在右则勾选中错误信息中的那个’wxpetdata’表

       4. 滚动屏幕到下面,有个下拉菜单(With selected:),选择”Repair table”

       ---------------------------------------------------------------------

       æˆ–者可以这样

       wxpetdata被标记有问题,需要修复。于是赶快恢复历史数据,上网查找原因。最终将问题解决。解决方法如下:

       æ‰¾åˆ°mysql的安装目录的bin/myisamchk工具,在命令行中输入:

       myisamchk -c -r ../data/dedecmsv4/dede_archives.MYI

       ç„¶åŽmyisamchk 工具会帮助你恢复数据表的索引。重新启动mysql,问题解决。

       é—®é¢˜åˆ†æžï¼š

       1、错误产生原因,有网友说是频繁查询和更新dede_archives表造成的索引错误,因为我的页面没有静态生成,而是动态页面,因此比较同意这种说法。还有说法为是MYSQL数据库因为某种原因而受到了损坏,如:数据库服务器突发性的断电、在提在数据库表提供服务时对表的原文件进行某种操作都有可能导致MYSQL数据库表被损坏而无法读取数据。总之就是因为某些不可测的问题造成表的损坏。

       é—®é¢˜çš„编号为

       2、问题解决办法。

       å½“你试图修复一个被破坏的表的问题时,有三种修复类型。如果你得到一个错误信息指出一个临时文件不能建立,删除信息所指出的文件并再试一次--这通常是上一次修复操作遗留下来的。

       è¿™ä¸‰ç§ä¿®å¤æ–¹æ³•å¦‚下所示:

       % myisamchk --recover --quick /path/to/tblName

       % myisamchk --recover /path/to/tblName

       % myisamchk --safe-recover /path/to/tblName

       ç¬¬ä¸€ç§æ˜¯æœ€å¿«çš„,用来修复最普通的问题;而最后一种是最慢的,用来修复一些其它方法所不能修复的问题。

       æ£€æŸ¥å’Œä¿®å¤MySQL数据文件

       å¦‚果上面的方法无法修复一个被损坏的表,在你放弃之前,你还可以试试下面这两个技巧:

       å¦‚果你怀疑表的索引文件(*.MYI)发生了不可修复的错误,甚至是丢失了这个文件,你可以使用数据文件(*.MYD)和数据格式文件(*.frm)重新生成它。首先制作一个数据文件(tblName.MYD)的拷贝。重启你的MySQL服务并连接到这个服务上,使用下面的命令删除表的内容:

       mysql> DELETE FROM tblName;

       åœ¨åˆ é™¤è¡¨çš„内容的同时,会建立一个新的索引文件。退出登录并重新关闭服务,然后用你刚才保存的数据文件(tblName.MYD)覆盖新的(空)数据文件。最后,使用myisamchk执行标准的修复(上面的第二种方法),根据表的数据的内容和表的格式文件重新生成索引数据。

       å¦‚果你的表的格式文件(tblName.frm)丢失了或者是发生了不可修复的错误,但是你清楚如何使用相应的CREATE TABLE语句来重新生成这张表,你可以重新生成一个新的.frm文件并和你的数据文件和索引文件(如果索引文件有问题,使用上面的方法重建一个新的)一起使用。首先制作一个数据和索引文件的拷贝,然后删除原来的文件(删除数据目录下有关这个表的所有记录)。

       å¯åŠ¨MySQL服务并使用当初的CREATE TABLE文件建立一个新的表。新的.frm文件应该可以正常工作了,但是最好你还是执行一下标准的修复(上面的第二种方法)。

       3、myisamchk工具介绍(见mysql的官方手册)

       å¯ä»¥ä½¿ç”¨myisamchk实用程序来获得有关数据库表的信息或检查、修复、优化他们。myisamchk适用MyISAM表(对应.MYI和.MYD文件的表)。

       è°ƒç”¨myisamchk的方法:

       shell> myisamchk [options] tbl_name ...

       options指定你想让myisamchk做什么。在后面描述它们。还可以通过调用myisamchk --help得到选项列表。

       tbl_name是你想要检查或修复的数据库表。如果你不在数据库目录的某处运行myisamchk,你必须指定数据库目录的路径,因为myisamchk不知道你的数据库位于哪儿。实际上,myisamchk不在乎你正在操作的文件是否位于一个数据库目录;你可以将对应于数据库表的文件拷贝到别处并且在那里执行恢复操作。

       å¦‚果你愿意,可以用myisamchk命令行命名几个表。还可以通过命名索引文件(用“ .MYI”后缀)来指定一个表。它允许你通过使用模式“*.MYI”指定在一个目录所有的表。例如,如果你在数据库目录,可以这样在目录下检查所有的MyISAM表:

       shell> myisamchk *.MYI

       å¦‚果你不在数据库目录下,可通过指定到目录的路径检查所有在那里的表:

       shell> myisamchk /path/to/database_dir/*.MYI

       ä½ ç”šè‡³å¯ä»¥é€šè¿‡ä¸ºMySQL数据目录的路径指定一个通配符来检查所有的数据库中的所有表:

       shell> myisamchk /path/to/datadir/*/*.MYI

       æŽ¨èçš„快速检查所有MyISAM表的方式是:

       shell> myisamchk --silent --fast /path/to/datadir/*/*.MYI

       å¦‚果你想要检查所有MyISAM表并修复任何破坏的表,可以使用下面的命令:

       shell> myisamchk --silent --force --fast --update-state \

        -O key_buffer=M -O sort_buffer=M \

        -O read_buffer=1M -O write_buffer=1M \

        /path/to/datadir/*/*.MYI

       è¯¥å‘½ä»¤å‡å®šä½ æœ‰å¤§äºŽMB的自由内存。关于用myisamchk分配内存的详细信息,参见5.9.5.5节,“myisamchk内存使用”。

       å½“你运行myisamchk时,必须确保其它程序不使用表。否则,当你运行myisamchk时,会显示下面的错误消息:

       warning: clients are using or haven't closed the table properly

       è¿™è¯´æ˜Žä½ æ­£å°è¯•æ£€æŸ¥æ­£è¢«å¦ä¸€ä¸ªè¿˜æ²¡æœ‰å…³é—­æ–‡ä»¶æˆ–已经终止而没有正确地关闭文件的程序(例如mysqld服务器)更新的表。

       å¦‚æžœmysqld正在运行,你必须通过FLUSH TABLES强制清空仍然在内存中的任何表修改。当你运行myisamchk时,必须确保其它程序不使用表。避免该问题的最容易的方法是使用CHECK TABLE而不用myisamchk来检查表。

Wi-Fi p2p & ap 共存

       nl接口

        编辑

        删除

        WiFi的共存模式:

        ap mode 通用应用在无线局域网成员设备(即客户端)的加入,即网络下行。它提供以无线方式组建无线局域网WLAN,相当际WLAN的中心设备。

        station mode即工作站模式,可以理解为某个网格中的一个工作站即客户端。那当一个WIFI芯片提供这个功能时,它就可以连到另外的一个网络当中,如家用路由器。通常用于提供网络的数据上行服务

        p2p mode也为Wi-Fi Direct

        Wi-Fi Direct 是一种点对点连接技术,它可以在两台 station 之间直接建立 tcp/ip 链接,并不需要AP的参与;其中一台station会起到传统意义上的AP的作用,称为Group Owner(GO),另外一台station则称为Group Client(GC),像连接AP一样连接到GO。GO和GC不仅可以是一对一,也可以是一对多;比如,一台GO可以同时连接着多台GC

        wpa_supplicant 是一个连接、配置 WIFI 的工具,它主要包含 wpa_supplicant 与 wpa_cli 两个程序. 可以通过 wpa_cli 来进行 WIFI 的配置与连接,前提要保证 wpa_supplicant 正常启动。

        wpa_supplicant本是开源项目源码,被谷歌修改后加入Android移动平台,它主要是用来支持WEP,WPA/WPA2和WAPI无线协议和加密认证的,而实际上的工作内容是通过socket(不管是wpa_supplicant与上层还是wpa_supplicant与驱动都采用socket通讯)与驱动交互上报数据给用户,而用户可以通过socket发送命令给wpa_supplicant调动驱动来对WiFi芯片操作。 简单的说,wpa_supplicant就是WiFi驱动和用户的中转站外加对协议和加密认证的支持。

        目前可以使用wireless-tools 或wpa_supplicant工具来配置无线网络。请记住重要的一点是,对无线网络的配置是全局性的,而非针对具体的接口。

        wpa_supplicant是一个较好的选择,但缺点是它不支持所有的驱动。请浏览wpa_supplicant网站获得它所支持的驱动列表。另外,wpa_supplicant目前只能连接到那些你已经配置好ESSID的无线网络。wireless-tools支持几乎所有的无线网卡和驱动,但它不能连接到那些只支持WPA的AP。

        经过编译后的 wpa_supplicant 源程序可以看到两个主要的可执行工具: wpa_supplicant 和 wpa_cli 。 wpa_supplicant 是核心程序,它和 wpa_cli 的关系就是服务和客户端的关系:后台运行wpa_supplicant,使用wpa_cli来搜索、设置、和连接网络。

        1)通过adb命令行,可以直接打开supplicant,从而运行wpa_cli,可以解决客户没有显示屏而无法操作WIFI的问题,还可以避免UI的问题带到driver。进一步来说,可以用在很多没有键盘输入和LCD输出的安卓 终端 产品的操作上。

        wpa_supplicant包含两个主要的可执行工具: wpa_supplicant 和 wpa_cli 。wpa_supplicant 是核心程序,它和 wpa_cli 的关系就是服务和客户端的关系:后台运行 wpa_supplicant,使用 wpa_cli 来搜索、设置、和连接网络。

        参考:

       /index.php/OMAP_Wireless_Connectivity_NLCP_WiFi_Direct_Configuration_Scripts

Android性能优化:定性和定位Android图形性能问题——以后台录屏进程为例

       简介

       发现、定性与定位

       总结

       跟不上旋律节奏的VSYNC

       严重异常耗时的dequeueBuffer

       VirtualDisplay合成耗时

       结论

       FPS

       初步定位问题

       定性问题

       定位问题

       成果展示

       参考

简介

       本文记录一次Android图形性能问题的分析过程——发现、定性和定位图形性能问题,以及探讨的性能优化方案。

       环境:Android Q + MTK + ARM Mali-G。

       所分析的性能问题(下称case):打开录屏应用并启动后台录屏,滑动前台应用(滑屏)。性能表现差:CPU、GPU负载显著升高、掉帧、用户明显卡顿感,帧率不足帧,帧渲染、合成耗时急剧飙升(渲染耗时平均为ms左右)。

       经过优化后,相同环境和条件下,渲染帧率稳定在帧(提升一倍),渲染耗时平均为8.ms左右(为优化前的不到三分之一的消耗)。

       关键词 Keywords: Screen Recording; Frame rate; FPS; GPU utilization; Jank; MediaProjection; VirtualDisplay; MediaCodec; Perfetto; Inferno; Surface; SurfaceTexture; VSYNC; SurfaceFlinger; HWC; Hardware composer; GPU; OpenGL;

发现、定性与定位FPS

       计算FPS的方法和工具 Android框架层通过hwui配合底层完成渲染。该框架本身提供了逐帧渲染分段耗时记录。通过dumpsys gfxinfo可以获取。

io.microshow.screenrecorder/io.microshow.screenrecorder.activity.MainActivity/android.view.ViewRootImpl@6b9b8a9?(visibility=0)DrawPrepare?Process?Execute3...................1................

       使用工具统计帧率与平均耗时(同时打印GPU负载),在开启后台录屏的情况下滑动屏幕,平均渲染耗时高达~ms,超出.ms一倍,导致帧率仅帧,显著低于帧。

Average?elapsed?.?msFPS:??│?9.?0.?.?2.#?GPU负载?LOADING?BLOCKING?IDLE?0?#?case的对比——未开启后台录屏Average?elapsed?9.?msFPS:??│?1.?0.?5.?1.

       通过gfx柱状图直观感受性能数据 直观地感受图形渲染性能,除了帧率感受、触控延时外,还可以通过将gfxinfo的分段耗时通过柱状图展示在屏幕上。

       这是case性能问题的gfxinfo柱状图,可以看到红柱和绿柱都非常高,远远超越了流畅标准。其中,绿柱异常放大表明两个Vsync之间耗时显著增长,江湖GT源码红柱异常放大表明应用层应用加速使用的DisplayLists大量增长、或图形层使用GLES调用GPU耗时显著增多导致的GPU执行绘制指令耗时变长。

初步定位问题

       本节记录初步的分析思路和定位过程。首先我们完成实验(启停后台录屏并滑动屏幕触发渲染)、观测以及记录,拿到了后台录屏启停情况下的FPS、分阶段耗时以及GPU负载(相关数据位于FPS小节)。

       开发的工具输出的统计数据计算结果非常直观,一眼可见,后台录屏为Draw阶段带来额外的~8倍或~8ms耗时,给Process阶段带来额外的~2倍或~ms耗时。帧率从帧坠落到~帧。

       耗时分析 可以看到,主要的额外耗时来自Draw和Process。接下来重点围绕着两part定位问题问题。

StageDescriptionCompDraw创建DisplayLists的耗时。Android的View如果支持硬件加速,绘制工作均通过DisplayLists由GPU绘制,可以处理为onDraw的耗时额外~8ms或~8倍Prepare准备没有额外耗时ProcessDisplayLists执行耗时。即硬件加速机制下提交给GPU绘制的工作耗时额外~ms或~2倍ExecuteFramebuffer前后缓冲区flip动作的耗时,上屏耗时额外不到~1ms

       Hz下,上述4个步骤合计耗时小于.ms为正常情况。case为~ms。主要增量来自Draw和Process。

       经过上述初步分析、观测后,接下来的分析可以围绕Draw和Process开展。由于Android Draw部分涉及较广,包含App 渲染线程(DisplayLists)、UI线程(onDraw方法创建DisplayLists),以及图形栈耗时如SurfaceFlinger、RenderEngine等都可能增加Draw耗时。

       这里一个技巧可以初步判断耗时来自App进程(渲染线程和UI线程)还是来自图形栈。如果能判断耗时来自App或图形栈,那么可以缩小分析范围、减少分析工作量。上述四大阶段的耗时统计分类比较宽,实际上还有更详细的分阶段耗时,它呈现在前文描述过的gfx统计信息柱状图上。gfx柱状图会以蓝色(RGB(,,))呈现onDraw方法创建和更新DisplayLists的耗时。如果case与正常情况对比后,这部分耗时(蓝柱大小对比)差异很小,即可说明额外的Draw耗时不是来自App的,极可能来自图形栈。欢欢讲源码Besides,结合过度绘制分析,判断case与正常情况下是否有更多的额外绘制次数可以协同判断。

       ——根据上述指导思想,排查出了case的额外Draw耗时与App onDraw无关,多出来的DisplayLists来自App以外的进程,可能是图形栈如SurfaceFlinger。

定性问题

       本小节介绍问题追踪过程,通过一些方法定位到各阶段的耗时原因,并定性地得出case性能问题的性质。从本小节开始,围绕Perfetto进行分析。这里贴出perfetto的总览,我将关键的信息排序到顶部。前四行分别为SF负责图形的线程、提交到GPU等待完成的工作、Vsync-App、Vsync-sf,最后两行为case中出现卡顿掉帧的App的主线程(UI)和渲染线程(RenderThread)。

跟不上旋律节奏的VSYNC

       容易看到,Vsync-sf非常不规律。Vsync-sf是触发SurfaceFlinger一次合成工作的基于Hardware VSYNC虚拟出来的一个信号。它相对于真实硬件信号(HW_VSYNC)一个规律的偏移(在case设备上,Vsync-app与Vsync-sf都被配置为8.3ms,即硬件VSYNC到达后,虚拟的Vsync-app和Vsync-sf延时8.3ms后发出,分别触发App绘制、SurfaceFlinger合成。

       而case的Vsync-sf交错、残次、不齐、无规律,显然工况不佳。它将导致SurfaceFlinger不能按照预期的时间间隔将合成的帧提交到Framebuffer(经过Flip后,被提交的Framebuffer将上屏成为显示器的下一帧图像),出现掉帧/丢帧。

       As we can see,case的VSYNC-sf出现严重的漂移(见图,第二行的VSYNC-sf残次不齐、跟不上规律、难看且混乱),这导致了丢帧。(但VSYNC-sf的失控仅表示与丢帧的相关性,并不直接表明因果性。养鱼指标源码

       VSYNC-sf为什么会出现偏差? 出于功耗的考虑,VSYNC-sf合VSYNC-app并不是一定会触发的。如果app或sf并没有更新画面的需求,那么死板固定地调度它们进行绘制和合成是不必的。编程上,负责触发VSYNC-sf和VSYNC-app的两个EventThread会在requestNextVsync调用后才会将下一个VSYNC-sf或VSYNC-app发出。因此,当(各自EventThread的)requestNextVsync没有调用时,VSYNC-app和VSYNC-sf也就出现漂移。BufferQueueLayer::onFrameAvailable会在应用提交后调用,该方法通过调用SF的signalLayerUpdate触发产生下一个VSYNC-sf。

       换而言之,出于功耗,或别的什么原因(比如耗时导致的延期,人家是线程实现的消息队列),SurfaceFlinger的SFEventThread有可能不调用requestNextVsync,这将导致Vsync-sf在窗口期内短暂消失——但是也不会出现参差不齐的情况。结合case的VSYNC信号报告来看,VSYNC-sf信号异常切实地提示了性能问题——它的不规律现象表明前后Vsync之间有异常耗时,而非低功耗机制被激活或无屏幕刷新(case性能问题复现时一直在滑前台应用的屏,它每ms都有画面更新的需求)。

       VSYNC-sf虽然出现了偏差,但是它与卡顿问题仅有相关性(或者说它是性能问题的结果),并非因果关系。猜测是其他卡顿问题导致了SF延缓了对VSYNC的request,导致其信号出现漂移。VSYNC-sf信号偏差实质上指导意义重大,因为它能提示我们,问题发生在比App更底层的地方(前文分析的结论),且比SurfaceFlinger提交到Framebuffer更上层的位置(VSYNC-sf用于触发合成,合成完成后提交到屏幕双缓冲区)。

       这样,将case性能问题的上下界都确定了,问题分析范围从原先的整个图形栈,有效的缩小到了SurfaceFlinger渲染和合成阶段了。

严重异常耗时的dequeueBuffer

       通读Perfetto,可以看到,出了难看的Vsync-sf以外,还可以看到刺眼的超长耗时的draw(App UI线程)以及耗时变态长的dequeueBuffer(App 渲染线程)调用。相对于正常情况,perfetto报告提示的case的draw方法成倍增长的耗时非常容易被误认为耗时“居然来自一开始就排除掉的App进程",这与前文提出的”问题范围“是不能自洽的——它们是相反的结论,肯定哪里不对。仔细分析才能发现,draw方法确实是消耗了更多墙上时间(但是不意味着消耗了更多CPU时间,因为等待过程是sleep的),但是draw方法是因为等待渲染线程的dequeueBuffer造成的耗时,而dequeueBuffer的严重异常耗时却是被底层的图形栈拖累的。

       我们看到,draw严重耗时,渲染线程dequeueBuffer消耗掉~ms的时间。As we all known,Android的Graphics buffer是生产者消费者模型,当作为消费者的SF来不及处理buffer并释放,渲染线程也就需要额外耗时等待buffer就绪。上面还有一段"Waiting GPU Completion"的trace没有贴上来(下图),这段耗时比不开启后台录屏的case下高得多(~3ms对比~ms),说明了一定的GPU性能问题或SF的性能问题,甚至有可能是Display有问题(HWC release耗时过长也会导致SF释放buf、生产者渲染线程dequeueBuffer额外等待)。

       这里的机制比较复杂,不熟悉底层Graphics buffer的流水线模型就不好理解。In one world, dequeueBuffer申请的buffer不是凭空new出来的,而是在App-SurfaceFlinger-Framebuffer这一流水线中循环使用的。流水线中的buffer不是无限的,而是有穷的几个。当底层的伙计,如SF和HWC,使用了buffer但是没有来得及释放时(它们的工作没做完之前不会释放buffer),流水线(可以理解成头尾相接的单向队列(ring buffer))没有可用的buffer,此时dequeueBuffer就不得不进入等待,出现耗时看上去很长的问题。实际上,dequeueBuffer耗时的唯一原因几乎仅仅只有一个:底层消费太慢了,流水线没有剩余buffer,因此需要等待。

       这个模型抽象理解非常简单。下图,右边消费者是底层图形栈——它每消费完一个buffer就会释放掉,每释放一个buffer应用层能用的buffer就加1。左边生产者是App渲染线程——它调用dequeueBuffer申请一个buffer以将它的画面绘制到这个buffer上。buffer送入BufferQueue后由右边的消费者(图形栈)进行消费(合成、上屏显示),然后释放buffer。当图形栈来不及release buffer时,dequeueBuffer的调用者(App渲染线程)将由于无可用buffer,就必须挂起等待了,在perfetto上就留下长长的一段”耗时“(实际上是墙上时间,大部分都没有占用CPU)。

       以上,这就是为什么说App渲染线程dequeueBuffer严重耗时中的耗时为什么要打引号,为什么要说是被图形层拖累了。

       下图可以看到,刨去dequeueBuffer的严重异常耗时,执行渲染的部分耗时相对于正常的case几乎没有差异,这可以断言渲染线程的惨烈耗时主要就是被dequeueBuffer浪费了。

       从GPU Completion来看,此时GPU正在为SF工作,因为在图中看到(不好意思没有截全,下图你是看不出来的),dequeueBuffer总是在SF的GPU Completion结束之后结束的,这就表明SF正在通过GPU消费buffer(调用GPU进行合成后提交,然后标记buffer允许被渲染线程dequeue)。dequeueBuffer获取到就绪的buffer此时此刻取决于SF的消费能力——因为case中它是短板。(当然图形层的buffer可用不止SurfaceFlinger需要释放,因为SF释放后buffer实质上流转到更底层的HWC,等它将Buffer提交到屏幕后才会释放,这里释放后才能给App再次使用(上面哪个模型图把SF和HWC合并为流水线的图形层buffer消费者)。

       从perfetto报告看HWC release非常及时、余量充足,SF的GPU Completion则较紧密地接着dequeueBuffer返回,基本断言是SF太慢了——排除HWC的责任。(下图看不出来,当时没有截图到HWC的release情况。)

       到这里,除了再次确认排除了前台App的问题外,还可以断言问题来自SurfaceFlinger过分耗时。此外将问题范围的下界从整个SF合成流程(上文的Vsync-sf)缩小到了排除HWC的范围。

       结论:渲染耗时一切正常,问题出现在SF消费buffer(合成图形)失速了,导致没有可用的buffer供渲染线程使用。从下图的SF的工况(第三列)来看,情况确实如此。

       既然一口咬定是SF的锅,那就瞧瞧SF。先看SF的INVALIDATE,这没啥好看的,异常case和正常case都是~2.5ms。主要看refresh,正常case ~6.8ms,异常case ~.8ms。refresh包含SF的合成四件套,包括rebuildLayerStack、CalcuateWorkingSet、Prepare、doComposition。Perfetto报告直接表明,case的后台录屏导致的额外一次合成和配套工作是主要的耗时增量。

       之所以会执行两次合成,是因为后台录屏工具编程上通过Android SDK提供的MediaProjection配合VirtualDisplay实现一个虚拟的镜像的屏幕。SurfaceFlinger会将画面输送一份到这个虚拟的Display以实现屏幕图像传送到录屏工具,虚拟的屏幕要求额外的一次合成。从上图可以直接得出结论,case带来的额外工作消耗就是对该录屏用的VirtualDisplay的合成工作(doComposition)带来的。

VirtualDisplay合成耗时

       由于问题范围已经缩小到了很小的一个范围,在SurfaceFlinger的Refresh过程中,case相对正常应用有巨大的差异耗时,几乎完全来自于对VirtualDisplay的合成耗时(doComposition)。同时也可以看到,两次合成(一次是设备的物理屏幕,一次是case的后台录屏工具创建的虚拟屏幕)中,虚拟屏幕的耗时远远高于物理屏幕(4倍以上)。

       通过查看ATRACE的tag(上图,Perfetto中SurfaceFlinger中主线程的各个trace point都是用ATRACE打的tag),结合dumpsys SurfaceFlinger,能直接看到的线索是:

       虚拟屏显著耗时,且合成工作通过GLES调用GPU完成

       物理屏合成耗时很小,它通过HWC合成

       结合图中提示的trace tag、耗时,可以得出结论,使用GPU合成的虚拟屏中因GPU合成耗时很长,导致它显著高于物理屏HWC合成耗时。如果GPU合成能够和HWC合成一样快,或者干脆让虚拟屏也使用HWC合成,那么可以预期SurfaceFlinger的合成工作的消耗将显著降低。

结论

       本小节综合上述三个小节的分析,对节”定性问题“下一个结论。

       耗时的本质已经被看透,录屏工具申请创建的VirtualDisplay没有通过HWC进行合成,而是通过GPU进行合成,它耗时很长导致界面卡顿。In one word,case使用的VirtualDisplay的合成方式不够高效。

       HWC是Hardward Composer。它接收图形数据,类似于往桌面(真的桌面,不是电脑和手机的桌面)上面叠放照片和纸张——即合成过程。这个工作能将界面上几个窗口叠加在一起后送到屏幕上显示。通过GLES调动GPU也能干这活,不过HWC执行合成的动作是纯硬件的——它很快,比GPU快几倍。

定位问题

       前面虽然定性了问题原因是合成方式不够高效,但是没有得出其中的原理——为什么虚拟屏不使用高效的HWC进行合成。本节通过介绍HWC的原理、SurfaceFlinger控制合成方式、虚拟屏Surface特性等来介绍图形栈中合成方式的处理模式。掌握了相关管理后,探讨一些尽量通用的共性的解决方案实现性能优化。最后着重介绍多套优化方案中的一种直面根本原因的解决方法——MediaCodec.MediaFormat创建的支持HWC合成的Surface方案。

       SurfaceFlinger如何决定使用HWC还是GPU合成? SurfaceFlinger合成主要可以依靠两条路径。其中之一是”纯硬“的HWC合成(在dumpsys SurfaceFlinger中可以看到Composition type为DEVICE),另一个是通过OpenGL让GPU进行合成(Composition type为CLIENT)。

       除非是功耗上的设计,否则SurfaceFlinger总是会优先检查本次合成是否支持使用HWC。编程上,在合成阶段之一的prepare过程中,SurfaceFlinger通过prepareFrame在RenderSurface与Hardware Composer(即HWC)的HIDL服务通信,完成hwc layer的创建。但是,layer能够成功创建不意味着一定支持HWC合成。SurfaceFlinger通过getChangedCompositionTypes向HWC查询不支持HWC合成的Layer。该方法返回的layer如果被标记为CLIENT合成,那么这部分Layer无法由HWC进行合成,而只能通过GPU进行合成——case的VirtualDisplay就是这个情况。

       部分layer可能不能由HWC合成的原因(除功耗策略、其他软件策略外):

       HWC layer达到上限 Hardware Composer支持的layer数量是有限的。查阅公开资料可知,HWC合成动作属于硬件提供的能力,它们的合成能力受到硬件本身的限制。Google官方资料对Android设备的要求是,HWC最少应该支持4个Layer,分别用于一个常规页面上最常见的4个层:壁纸、状态栏、导航栏和应用窗口。 在case设备中,经过测试,该平台的HWC最多支持7个能进行HWC合成的layer,从第8个layer开始,完完全全只能使用CLIENT合成亦即SurfaceFlinger调用RenderEngine通过OpenGL调动GPU进行合成。 正是由于HWC合成layer有上限,因此在弹出多个弹窗、叠加过于复杂时,即使界面简单也有可能出现比较明显的卡顿。

       VirtualDisplay的Surface格式不受HWC支持 HWC的硬件合成能力对buffer(Surface封装)内保存的图像的格式有要求。比如,HWC不能处理缩放,仅支持一部分的格式,大多数都还有其他因素会导致不支持,如旋转、部分Alpha等等。In one word,图像格式的数量是远远多于HWC支持的类型数的。当HWC碰到不支持合成的Surface时,就会在前文提过的getChangedCompositionTypes中通知SurfaceFlinger,由SurfaceFlinger转为使用GPU合成。

       结合上述几种情况,设计实验验证。其中通过在物理屏上弹窗来增加Layer以获取HWC Layer上限。确认case无法使用HWC合成不是Layer上限导致的问题后,通过对比来验证Surface格式问题。Surface是对native层的buffer的封装,其类型广泛、实现复杂,一个一个试是不现实的。通过对比性能强劲的类似实现可以一探究竟。Android adb提供一个出厂自带的录屏命令screenrecord、用于测试双屏显示功能的虚拟辅助屏幕(开发者模式-模拟辅助屏)、著名远程窥屏工具scrcpy等三个工具是一系列重要参考。

       经过测试,screenrecord和scrcpy创建的VirtualDisplay支持HWC合成——这是优化目标。首先看看它们的实现。

       编程上,虚拟辅助屏幕采用了与case一模一样的实现——通过创建VirtualDisplay让图形层额外合成一次屏幕到该虚拟屏幕中。虚拟屏幕本质上将画面发送给录屏功能实现,而非进行显示来完成录屏。

       通读screenrecord源码,逻辑上,它与虚拟辅助屏、case录屏应用是相同的——VirtualDisplay录屏。但是编程上略有差异:

       screenrecord直接通过binder与SurfaceFlinger通信,获取了raw VirtualDisplay,而