【c webbrowser 源码】【ssm 源码推荐】【volley源码缓存】linuxgcc源码编译
1.Linux编译器-gcc/g++
2.Linux驱动开发笔记(二):ubuntu系统从源码编译安装gcc7.3.0编译器
3.Linux Centos7.8.2003系统离线GCC源码编译升级
4.Linux升级gcc到最新版本gcc-11.2.0
5.Linux环境源码安装GCC/CMAKE
6.å¦ä½ç¨GCCå¨linuxä¸ç¼è¯Cè¯è¨ç¨åºï¼
Linux编译器-gcc/g++
gcc/g++ 是源码 Linux 系统中的编译器,它们用于将源代码编译成可执行程序或库文件。编译在编译过程中,源码源代码需要经过预处理、编译编译、源码汇编、编译c webbrowser 源码链接等步骤。源码
预处理阶段主要进行宏替换。编译使用 `-E` 参数,源码gcc 可以在预处理后停止编译过程,编译而 `-o` 参数用于指定输出文件。源码在使用 vim 进入到 `.i` 文件后,编译预处理会将源代码中的源码宏替换掉,生成新的编译文件。
头文件展开是源码将头文件中的内容拷贝到源代码中,这一过程发生在编译前,由系统自动完成。Linux 系统下默认的头文件路径为 `/usr/include/`,在需要使用某个特定头文件时,可直接查看该路径下的文件。
条件编译用于在不同的环境下选择性地包含特定代码。以 PyCharm 的安装为例,社区版和专业版功能不同,通过条件编译可以只包含专业版特有的功能代码,减少了维护的ssm 源码推荐复杂性。
编译阶段中,gcc/g++ 会检查源代码的语法错误。若无错误,则会将代码编译成汇编语言。在 Linux 环境下,编译器会将源代码编译成汇编代码文件,通过 `-S` 参数可以指定输出文件。
汇编阶段将编译阶段生成的汇编代码文件转换为目标代码文件。这一过程由 `-c` 参数控制,并通过 `-o` 参数指定输出文件。
链接阶段将目标代码文件与所需的库文件结合,生成可执行文件或库文件。完成链接后,即可生成最终的可执行文件。
在 C 程序中,`printf` 函数的实现位于系统库文件 libc.so.6 中。当编译时未特别指定库路径时,gcc 会搜索默认的库路径 `/usr/lib` 来链接 libc.so.6。
静态库在编译链接时将库文件的代码全部加入到可执行文件中,生成的文件较大但运行时不再需要库文件。静态库的后缀名为 `.a`。相反,动态库在编译链接时不包含库文件代码,仅在程序运行时加载库文件,volley源码缓存以减少系统的开销。动态库的后缀名为 `.so`,gcc 默认使用动态库。
gcc 提供了多种优化选项,如 `-O0` 表示不进行优化,而 `-O3` 为最高优化级别。`-g` 生成调试信息,方便使用 GNU 调试器进行调试。`-static` 和 `-shared` 用于控制静态链接和动态链接。
在编译时,使用 `-w` 可以关闭所有警告信息,而 `-Wall` 则会输出所有警告信息。通过这些选项,开发者可以更好地控制编译过程中的行为和生成的代码质量。
Linux驱动开发笔记(二):ubuntu系统从源码编译安装gcc7.3.0编译器
在编译Ubuntu驱动时,由于使用的gcc版本为7.3.0,通过apt管理和下载都无法直接安装,因此需要从源码编译安装gcc7.3.0编译器。
GCC,作为GNU项目的重要组成部分,是一款遵循GPL许可证的自由软件。起初,它为GNU操作系统设计,如今已广泛应用于Linux、react源码难度BSD、MacOS X等系统,甚至在Windows上也有应用。GCC支持多种处理器架构,如x、ARM和MIPS,并且支持多种编程语言,如C、C++、Fortran、Pascal等。
要从源码安装gcc7.3.0,首先需要下载源码包。下载地址为:mirrors.tuna.tsinghua.edu.cn...
安装过程分为几个步骤。首先,确保网络连接,因为需要依赖库,如libgmp-dev、libmpfr-dev和libmpc-dev。安装完这些后,不要卸载已有的gcc,因为可能会遇到问题。
下载并解压gcc-7.3.0.tar.gz,然后执行./configure。dubbo源码走读注意增加c和c++的配置,避免编译结果只有g++。配置完成后,进行make -j4编译,可能会遇到错误,如"fatal error: asm/errno.h: No such file or directory",这时需要修改头文件路径。
继续编译,可能会遇到"sanitizer_syscall_generic.inc::: error: '__NR_open' was not declared in this scope",解决方法是修正头文件链接。最后,编译成功后执行sudo make install,并确认安装版本。
在安装过程中,有两点需要注意:一是本地需要g++,否则编译时会出错,解决方法是安装gcc;二是安装后可能只有g++,没有gcc,此时需在./configure阶段添加c和c++的配置。
Linux Centos7.8.系统离线GCC源码编译升级
要进行Linux Centos7.8.的GCC离线源码编译升级,首先需要准备一个干净的Centos7.8.虚拟机,并可以使用本地镜像源,具体步骤可在相关文章中找到。
在GCC的ftp站点下载所需版本,例如gcc-.1.0。新安装的机器可能缺少编译依赖,但镜像源内通常包含这些,无需在线下载。
编译依赖库一般包括gcc-c++、autoconf、automake、libtools和m4,但具体可能因机器环境而异。简便的方法是使用yum group install Development Tools,这个组合包含了大部分开发所需的依赖。
离线编译时,先解压gcc源码,然后进入目录,由于是离线,需要手动下载所有依赖,如gmp-6.1.0、isl、mpfr和mpc。确保按依赖顺序编译,例如先gmp-6.1.0,然后mpc-1.0.3。
创建编译目录,设置编译参数后,开始编译过程。可能遇到找不到库的错误,此时需要将库添加到环境变量。编译时间根据机器性能不同,通常十几分钟内完成。
编译成功后,升级GCC的过程是删除或备份原有GCC软链接,然后指向新编译的GCC目录。升级脚本可以简化这一过程,但如有问题,务必及时调整。
Linux升级gcc到最新版本gcc-.2.0
为了升级Linux系统中的gcc到最新版本gcc-.2.0,你可以遵循以下步骤:
首先,访问该地址下载最新的源码包并解压缩:
gcc-.2.0.tar.gz 可在 /gnu/gcc 地址获取,选择适合自己系统版本的文件进行下载。下载完成后,解压缩源码包。
其次,准备必要的依赖及配置文件,确保gcc正常编译。
根据gcc的构建需求,安装所需的开发工具、库文件等依赖。具体依赖列表可参考gcc源码包的README或构建指南。
配置gcc的编译参数,确保生成的代码满足特定需求。这包括设置编译器版本、优化级别、编译目标等。
进行编译,使用如下命令进行gcc源码的编译过程:
./configure --prefix=/opt/gcc-.2.0 --enable-bootstrap --enable-shared --enable-threads=posix --enable-plugin --enable-languages=c,c++,fortran,objc,obj-c++,java,ada --with-system-zlib --enable-__cxa_atexit --with-toolchain=/opt/gcc-.2.0 --with-std=gnu
编译完成后,执行以下命令进行安装:
make && make install
验证gcc版本,确保已成功升级到gcc-.2.0:
gcc --version
删除旧版本gcc,保留新版本以防止意外覆盖:
sudo rm -rf /usr/bin/gcc /usr/bin/g++ /usr/bin/gfortran
配置新版本全局可用,确保在任何目录下均可直接使用gcc、g++等工具:
sudo ln -s /opt/gcc-.2.0/bin/gcc /usr/bin/gcc
同样,为g++和gfortran创建符号链接:
sudo ln -s /opt/gcc-.2.0/bin/g++ /usr/bin/g++
sudo ln -s /opt/gcc-.2.0/bin/gfortran /usr/bin/gfortran
至此,gcc已成功升级到最新版本gcc-.2.0。为了更新动态库,根据动态库的类型和使用情况,可能需要重新构建或替换现有库文件。这通常涉及调整构建配置和重新编译依赖库。确保在进行此步骤之前,充分理解库文件的依赖关系。
Linux环境源码安装GCC/CMAKE
为了在Linux环境下源码安装GCC和CMAKE,我们需要遵循详细的步骤和策略。对于GCC源码,我们可以从GitHub-gcc-mirror/gcc获取4.4.6版本。接下来,进入下载后的GCC源代码目录。
在配置和编译GCC时,首先应该明确指定安装的目录,避免冲突。可能在配置脚本时遇到错误,这时候需要解决依赖项问题。分别安装MPFR、MPC和任何其他必要的依赖库。对于GCC8.3及以上版本,内部集成脚本能够简便地获取这些依赖库。
安装库路径后,再次执行配置文件,加入库路径参数,确保安装的每个步骤顺利进行。配置完成后,整个GCC安装过程即宣告成功。
为了测试GCC是否正确安装,遵循指导进行验证。
CMake的安装同样关键,可以通过直接指定需要的GCC版本来简化安装流程。在CMake命令行参数中指定GCC路径也是可行的。
在运行GCC4.4.6编译的程序时,可能存在系统路径问题,这是因为我们选择的是不替换安装方式。因此,需要额外操作,确保所需的库被正确添加到路径中。
遇到GCC多版本引起的ABI兼容问题时,如果编译链接过程中遇到“undefined reference to"“std::__cxx ***””错误,这提示可能是C++ ABI问题。处理方法是,针对GCC5.1之前版本发布的libstdc++中新增的ABI,通过添加定义-D_GLIBCXX_USE_CXX_ABI=0来解决该问题。
对于GDB版本的问题,特别在GCC.1的使用中,要求C++的编译器,导致了旧版本GDB启动出现Segment Fault。解决办法是升级GDB版本。
附录中提供了一些额外资源,例如Mingw下载,适用于位和位Windows的最新版x_-win-sjlj;CMake下载链接以及GCC的GitHub地址等。遵循这些资源和提示,能够帮助用户顺畅进行Linux环境下的GCC和CMAKE的源码安装与配置。
å¦ä½ç¨GCCå¨linuxä¸ç¼è¯Cè¯è¨ç¨åºï¼
å¨Linuxä¸é¢,å¦æè¦ç¼è¯ä¸ä¸ªCè¯è¨æºç¨åº,æ们è¦ä½¿ç¨GNUçgccç¼è¯å¨ï¼å设æ们æä¸é¢ä¸ä¸ªé常ç®åçæºç¨åº(hello.c):int main(int argc,char **argv)
{
printf("Hello Linux\n");
}
è¦ç¼è¯è¿ä¸ªç¨åº,æ们åªè¦å¨å½ä»¤è¡ä¸æ§è¡:
gcc -o hello hello.c
gcc ç¼è¯å¨å°±ä¼ä¸ºæ们çæä¸ä¸ªhelloçå¯æ§è¡æ件.æ§è¡./helloå°±å¯ä»¥çå°ç¨
åºçè¾åºç»æäº
Linuxæ¯ä¸å¥å 费使ç¨åèªç±ä¼ æçç±»Unixæä½ç³»ç»ï¼æ¯ä¸ä¸ªåºäºPOSIXåUNIXçå¤ç¨æ·ãå¤ä»»å¡ãæ¯æå¤çº¿ç¨åå¤CPUçæä½ç³»ç»ãå®è½è¿è¡ä¸»è¦çUNIXå·¥å ·è½¯ä»¶ãåºç¨ç¨åºåç½ç»åè®®ãå®æ¯æä½åä½ç¡¬ä»¶ãLinux继æ¿äºUnix以ç½ç»ä¸ºæ ¸å¿ç设计ææ³ï¼æ¯ä¸ä¸ªæ§è½ç¨³å®çå¤ç¨æ·ç½ç»æä½ç³»ç»ã
Linuxæä½ç³»ç»è¯çäº å¹´ æ5 æ¥ï¼è¿æ¯ç¬¬ä¸æ¬¡æ£å¼åå¤å ¬å¸æ¶é´ï¼ãLinuxåå¨ç许å¤ä¸åçLinuxçæ¬ï¼ä½å®ä»¬é½ä½¿ç¨äºLinuxå æ ¸ãLinuxå¯å®è£ å¨åç§è®¡ç®æºç¡¬ä»¶è®¾å¤ä¸ï¼æ¯å¦ææºãå¹³æ¿çµèãè·¯ç±å¨ãè§é¢æ¸¸ææ§å¶å°ãå°å¼è®¡ç®æºã大åæºåè¶ çº§è®¡ç®æºã