本站提倡有节制游戏,合理安排游戏时间,注意劳逸结合。

【网站流量卡源码】【redis源码gossip】【客户要求源码】go源码阅读

2024-11-23 02:57:17 来源:休闲 分类:休闲

1.client-go 源码分析(4) - ClientSet客户端 和 DynamicClient客户端
2.Golang sort源码阅读
3.go源码分析——类型
4.golang源码系列---手把手带你看list实现
5.go源码:Sleep函数与线程
6.Go语言源码阅读分析(3)-- unsafe

go源码阅读

client-go 源码分析(4) - ClientSet客户端 和 DynamicClient客户端

       本篇文章主要探讨ClientSet客户端与DynamicClient客户端的源码阅读特性差异。ClientSet以其类型安全的源码阅读优势,专门操作内置的源码阅读Kubernetes资源,如Pods。源码阅读其核心在于通过clientset.CoreV1()获取到的源码阅读corev1.CoreV1Client,这个对象实现了PodsGetter接口,源码阅读网站流量卡源码进而执行Pods方法,源码阅读如查询default namespace下的源码阅读所有Pod。

       示例代码展示了如何通过CoreV1Client获取Pods,源码阅读实际上是源码阅读通过调用restclient客户端的List方法。ClientSet的源码阅读CRUD操作均基于已知的结构化数据。相比之下,源码阅读DynamicClient更为灵活,源码阅读它不仅能操作内置资源,源码阅读还能处理CRD自定义资源,源码阅读因为其内部使用了Unstructured,以适应非结构化数据的处理。

       DynamicClient与ClientSet的差异在于,它支持动态操作任何Kubernetes资源,包括CRD。使用DynamicClient时,如删除、创建资源,也是通过底层的RESTClient客户端实现。调用DynamicClient时,会先通过Runtime将响应体转换为非结构化的数据,然后利用DefaultUnstructuredConverter将其转换为Kubernetes资源对象。

       值得注意的是,与ClientSet一样,DynamicClient客户端也支持ResetClient,只是在处理非结构化数据时有所不同。关注“后端云”微信公众号,获取更多技术资讯和教程。

Golang sort源码阅读

       深入解析Go语言的sort源码,你会发现它并非简单的快排应用。首先,要排序的对象需要遵循特定的接口:

       接下来,以sort.Ints为例,尽管它的名称暗示了快速排序,但实际上是个多算法融合的策略。在源码中,你会看到:

       Go的sort函数巧妙地根据输入数据的特性,动态地切换到不同的排序算法。例如,在某些情况下,它会选择快速排序,而在其他情况下,又可能采用其他高效的排序方法。

       这种灵活性并非Go所独有,Python和Java的排序方法,如TimSort,同样采用了混合排序的策略。这种设计让这些语言的sort函数能够在性能和效率上达到良好的平衡。

       总的来说,Go的sort函数展现了一种智能的排序策略,通过结合多种算法,优化了排序过程,是值得深入研究的实现细节。

go源码分析——类型

       类型是Go语言中的核心概念,用于定义数据的结构和行为。类型可以分为基础类型和自定义类型,编译器会为每种类型生成对应的描述信息,这些信息构成了Go语言的类型系统。内置类型的redis源码gossip数据结构在`runtime.type`文件中,而自定义类型的数据结构在`type.go`文件中,包括了类型名称、大小、对齐边界等属性。例如,切片的元素类型和map的键值类型都在其中有所体现。空接口`interface{ }`和非空接口`iface`是描述接口的底层结构体,分别用于表示不包含方法的接口和包含方法的接口。空接口的结构简单,包含类型和数据的位置信息,而非空接口的结构更复杂,包含接口的类型、实体类型和方法信息。接口的实现依赖于方法集的匹配,时间复杂度为O(m+n)。断言是判断一个类型是否实现了某个接口的机制,它依赖于接口的动态类型和类型元数据。类型转换和接口断言遵循类型兼容性原则,而反射提供了访问和操作类型元数据的能力,其核心是`reflect.Type`和`reflect.Value`两个结构体类型,分别用于获取类型信息和操作值。反射的关键在于明确接口的动态类型和类型实现了哪些方法,以及类型元数据与空接口和非空接口的数据结构之间的关系。

golang源码系列---手把手带你看list实现

       本文提供Golang源码中双向链表实现的详细解析。

       双向链表结构包含头节点对象root和链表长度,无需遍历获取长度,链表节点额外设指针指向链表,方便信息获取。

       创建双向链表使用`list.New`函数,初始化链表。

       `Init`方法可初始化或清空链表,链表结构内含占位头结点。

       `Len`方法返回链表长度,由结构体字段存储,无需遍历。

       `Front`与`Back`分别获取头结点和尾结点。

       `InsertBefore`与`InsertAfter`方法在指定节点前后插入新节点,底层调用`insertValue`实现。

       `PushFront`与`PushBack`方法分别在链表头部和尾部插入新节点。

       `MoveToBack`与`MoveToFront`内部调用`move`方法,将节点移动至特定位置。

       `MoveBefore`与`MoveAfter`将节点移动至指定节点前后。

       `PushBackList`与`PushFrontList`方法分别在链表尾部或头部插入其他链表节点。

       例如,原始链表A1 - A2 - A3与链表B1 - B2 - B3,`PushFrontList`结果为B1 - B2 - B3 - A1 - A2 - A3,`PushBackList`结果为A1 - A2 - A3 - B1 - B2 - B3。

go源码:Sleep函数与线程

       在探索 Go 语言的并发编程中,Sleep 函数与线程的交互方式与 Java 或其他基于线程池的并发模型有所不同。本文将深入分析 Go 语言中 Sleep 函数的实现及其与线程的互动方式,以解答关于 Go 语言中 Sleep 函数与线程关系的问题。

       首先,重要的一点是,当一个 goroutine(g)调用 Sleep 函数时,它并不会导致当前线程被挂起。相反,Go 通过特殊的机制来处理这种情景,确保 Sleep 函数的调用不会影响到线程的执行。这一特性是 Go 语言并发模型中独特而关键的部分。

       具体来说,当一个 goroutine 调用 Sleep 函数时,它首先将自身信息保存到线程的关键结构体(p)中并挂起。这一过程涉及多个函数调用,客户要求源码包括 `time.Sleep`、`runtime.timeSleep`、`runtime.gopark`、`runtime.mcall`、`runtime.park_m`、`runtime.resetForSleep` 等。最终,该 goroutine 会被放入一个 timer 结构体中,并将其放入到 p 关联的一个最小堆中,从而实现了对当前 goroutine 的保存,同时为调度器提供了切换到其他 goroutine 或 timer 的机会。因此,这里的 timer 实际上代表了被 Sleep 挂起的 goroutine,它在睡眠到期后能够及时得到执行。

       接下来,我们深入分析 goroutine 的调度过程。当线程 p 需要执行时,它会通过 `runtime.park_m` 函数调用 `schedule` 函数来进行 goroutine 或 timer 的切换。在此过程中,`runtime.findrunnable` 函数会检查线程堆中是否存在已到期的 timer,如果存在,则切换到该 timer 进行执行。如果 timer 堆中没有已到期的 timer,线程会继续检查本地和全局的 goroutine 队列中是否还有待执行的 goroutine,如果队列为空,则线程会尝试“偷取”其他 goroutine 的任务。这一过程包括了检查 timer 堆、偷取其他 p 中的到期 timer 或者普通 goroutine,确保任务能够及时执行。

       在“偷取”任务的过程中,线程会优先处理即将到期的 timer,确保这些 timer 的准时执行。如果当前线程正在执行其他任务(如 epoll 网络),则在执行过程中会定期检查 timer 到期情况。如果发现其他线程的 timer 到期时间早于自身,会首先唤醒该线程以处理其 timer,确保不会错过任何到期的 timer。

       为了证明当前线程设置的 timer 能够准时执行,本文提出了两种证明方法。第一种方法基于代码细节,重点分析了线程状态的变化和 timer 的执行流程。具体而言,文章中提到的三种线程状态(正常运行、epoll 网络、睡眠)以及相应的 timer 执行情况,表明在 Go 语言中,timer 的执行策略能够确保其准时执行。第二种方法则从全局调度策略的角度出发,强调了 Go 语言中线程策略的设计原则,即至少有一个线程处于“spinning”状态或者所有线程都在执行任务,这保证了 timer 的准时执行。

       总之,Go 语言中 Sleep 函数与线程之间的交互方式,通过特殊的线程管理机制,确保了 goroutine 的 Sleep 操作不会阻塞线程,同时保证了 timer 的准时执行。这一机制是 Go 语言并发模型的独特之处,为开发者提供了一种高效且灵活的并发处理方式。

Go语言源码阅读分析(3)-- unsafe

       Go语言的unsafe包提供了一套打破类型安全限制的操作,但使用时需谨慎,因为它可能导致代码无法移植。包内主要包含unsafe.go文件和一些声明,实际实现和测试用例并未提供。.net 社区源码关键内容如下:

       1. Pointer类型:可以转换为任何类型的指针,以及Uintptr类型,这种转换允许直接读写内存,风险极高,需谨慎使用。

        - 可以将任意类型转换为Pointer类型,但转换后不能长于原类型,且要求内存布局一致。例如,将float转换为uint的函数`Floatbits`。

        - Pointer可以转换为uintptr,但这种转换仅用于内存地址的打印,且不能直接从uintptr恢复为Pointer,除非是枚举类型。

       2. 偏移指针:用于访问结构体字段或数组元素,需确保指针不会超出原始对象的内存范围。

       3. syscall调用:在syscall包中,某些函数需要在同一条语句中进行指针到uintptr的转换,以确保指针指向的对象在调用时仍然有效。

       4. reflect包使用:reflect.Value.Pointer和UndafeAddr返回的都是uintptr,应在获取后立即转换为Pointer,避免对象被GC回收。

       5. 反射结构体转换:例如StringHeader和SliceHeader的Data字段,仅在指向活动切片或字符串时有效。

       总之,unsafe包的使用需遵循特定的规则和限制,不当使用可能导致程序不稳定或移植问题。接下来的计划是研究reflect包。

Go看源码必会知识之unsafe包

       前言

       有看源码的朋友应该会发现,Go标准库中大量使用了unsafe.pointer,要想更好的理解源码实现,就要知道unsafe.pointer到底是什么?所以今天就与大家来聊一聊unsafe包。

什么是unsafe

       众所周知,Go语言被设计成一门强类型的静态语言,那么他的类型就不能改变了,静态也是意味着类型检查在运行前就做了。所以在Go语言中是不允许两个指针类型进行转换的,使用过C语言的朋友应该知道这在C语言中是可以实现的,Go中不允许这么使用是处于安全考虑,毕竟强制转型会引起各种各样的麻烦,有时这些麻烦很容易被察觉,有时他们却又隐藏极深,难以察觉。大多数读者可能不明白为什么类型转换是不安全的,这里用C语言举一个简单的例子:

int main(){ double pi = 3.;double *pv = πvoid *temp = pd;int *p = temp;}

       在标准C语言中,任何非void类型的指针都可以和void类型的指针相互指派,也可以通过void类型指针作为中介,实现不同类型的指针间接相互转换。上面示例中,指针pv指向的空间本是一个双精度数据,占8个字节,但是经过转换后,p指向的是一个4字节的int类型。这种发生内存截断的设计缺陷会在转换后进行内存访问是存在安全隐患。我想这就是Go语言被设计成强类型语言的原因之一吧。

       虽然类型转换是不安全的,但是在一些特殊场景下,使用了它,可以打破Go的类型和内存安全机制,可以绕过类型系统低效,提高运行效率。所以Go标准库中提供了一个unsafe包,之所以叫这个名字,camera录像源码就是不推荐大家使用,但是不是不能用,如果你掌握的特别好,还是可以实践的。

unsafe 实现原理

       在使用之前我们先来看一下unsafe的源码部分,标准库unsafe包中只提供了3``种方法,分别是:

func Sizeof(x ArbitraryType) uintptrfunc Offsetof(x ArbitraryType) uintptrfunc Alignof(x ArbitraryType) uintptr

       Sizeof(x ArbitrayType)方法主要作用是用返回类型x所占据的字节数,但并不包含x所指向的内容的大小,与C语言标准库中的Sizeof()方法功能一样,比如在位机器上,一个指针返回大小就是4字节。

       Offsetof(x ArbitraryType)方法主要作用是返回结构体成员在内存中的位置离结构体起始处(结构体的第一个字段的偏移量都是0)的字节数,即偏移量,我们在注释中看一看到其入参必须是一个结构体,其返回值是一个常量。

       Alignof(x ArbitratyType)的主要作用是返回一个类型的对齐值,也可以叫做对齐系数或者对齐倍数。对齐值是一个和内存对齐有关的值,合理的内存对齐可以提高内存读写的性能。一般对齐值是2^n,最大不会超过8(受内存对齐影响).获取对齐值还可以使用反射包的函数,也就是说:unsafe.Alignof(x)等价于reflect.TypeOf(x).Align()。对于任意类型的变量x,unsafe.Alignof(x)至少为1。对于struct结构体类型的变量x,计算x每一个字段f的unsafe.Alignof(x,f),unsafe.Alignof(x)等于其中的最大值。对于array数组类型的变量x,unsafe.Alignof(x)等于构成数组的元素类型的对齐倍数。没有任何字段的空struct{ }和没有任何元素的array占据的内存空间大小为0,不同大小为0的变量可能指向同一块地址。

       细心的朋友会发发现这三个方法返回的都是uintptr类型,这个目的就是可以和unsafe.poniter类型相互转换,因为*T是不能计算偏移量的,也不能进行计算,但是uintptr是可以的,所以可以使用uintptr类型进行计算,这样就可以可以访问特定的内存了,达到对不同的内存读写的目的。三个方法的入参都是ArbitraryType类型,代表着任意类型的意思,同时还提供了一个Pointer指针类型,即像void *一样的通用型指针。

type ArbitraryType inttype Pointer *ArbitraryType// uintptr 是一个整数类型,它足够大,可以存储type uintptr uintptr

       上面说了这么多,可能会有点懵,在这里对三种指针类型做一个总结:

       *T:普通类型指针类型,用于传递对象地址,不能进行指针运算。

       unsafe.poniter:通用指针类型,用于转换不同类型的指针,不能进行指针运算,不能读取内存存储的值(需转换到某一类型的普通指针)

       uintptr:用于指针运算,GC不把uintptr当指针,uintptr无法持有对象。uintptr类型的目标会被回收。

       三者关系就是:unsafe.Pointer是桥梁,可以让任意类型的指针实现相互转换,也可以将任意类型的指针转换为uintptr进行指针运算,也就说uintptr是用来与unsafe.Pointer打配合,用于指针运算。画个图表示一下:

       基本原理就说到这里啦,接下来我们一起来看看如何使用~

unsafe.Pointer基本使用

       我们在上一篇分析atomic.Value源码时,看到atomic/value.go中定义了一个ifaceWords结构,其中typ和data字段类型就是unsafe.Poniter,这里使用unsafe.Poniter类型的原因是传入的值就是interface{ }类型,使用unsafe.Pointer强转成ifaceWords类型,这样可以把类型和值都保存了下来,方便后面的写入类型检查。截取部分代码如下:

// ifaceWords is interface{ } internal representation.type ifaceWords struct { typunsafe.Pointer data unsafe.Pointer}// Load returns the value set by the most recent Store.// It returns nil if there has been no call to Store for this Value.func (v *Value) Load() (x interface{ }) { vp := (*ifaceWords)(unsafe.Pointer(v))for { typ := LoadPointer(&vp.typ) // 读取已经存在值的类型/**..... 中间省略**/// First store completed. Check type and overwrite data.if typ != xp.typ { //当前类型与要存入的类型做对比 panic("sync/atomic: store of inconsistently typed value into Value")}}

       上面就是源码中使用unsafe.Pointer的一个例子,有一天当你准备读源码时,unsafe.pointer的使用到处可见。好啦,接下来我们写一个简单的例子,看看unsafe.Pointer是如何使用的。

func main(){ number := 5 pointer := &number fmt.Printf("number:addr:%p, value:%d\n",pointer,*pointer) floatNumber := (*float)(unsafe.Pointer(pointer)) *floatNumber = *floatNumber + 3 fmt.Printf("float:addr:%p, value:%f\n",floatNumber,*floatNumber)}

       运行结果:

number:addr:0xc, value:5float:addr:0xc, value:3.

       由运行可知使用unsafe.Pointer强制类型转换后指针指向的地址是没有改变,只是类型发生了改变。这个例子本身没什么意义,正常项目中也不会这样使用。

       总结一下基本使用:先把*T类型转换成unsafe.Pointer类型,然后在进行强制转换转成你需要的指针类型即可。

Sizeof、Alignof、Offsetof三个函数的基本使用

       先看一个例子:

type User struct { Name string Age uint Gender bool // 男:true 女:false 就是举个例子别吐槽我这么用。。。。}func func_example(){ // sizeof fmt.Println(unsafe.Sizeof(true)) fmt.Println(unsafe.Sizeof(int8(0))) fmt.Println(unsafe.Sizeof(int())) fmt.Println(unsafe.Sizeof(int())) fmt.Println(unsafe.Sizeof(int())) fmt.Println(unsafe.Sizeof("asong")) fmt.Println(unsafe.Sizeof([]int{ 1,3,4})) // Offsetof user := User{ Name: "Asong", Age: ,Gender: true} userNamePointer := unsafe.Pointer(&user) nNamePointer := (*string)(unsafe.Pointer(userNamePointer)) *nNamePointer = "Golang梦工厂" nAgePointer := (*uint)(unsafe.Pointer(uintptr(userNamePointer) + unsafe.Offsetof(user.Age))) *nAgePointer = nGender := (*bool)(unsafe.Pointer(uintptr(userNamePointer)+unsafe.Offsetof(user.Gender))) *nGender = false fmt.Printf("u.Name: %s, u.Age: %d,u.Gender: %v\n", user.Name, user.Age,user.Gender) // Alignof var b bool var i8 int8 var i int var i int var f float var s string var m map[string]string var p *int fmt.Println(unsafe.Alignof(b)) fmt.Println(unsafe.Alignof(i8)) fmt.Println(unsafe.Alignof(i)) fmt.Println(unsafe.Alignof(i)) fmt.Println(unsafe.Alignof(f)) fmt.Println(unsafe.Alignof(s)) fmt.Println(unsafe.Alignof(m)) fmt.Println(unsafe.Alignof(p))}

       为了省事,把三个函数的使用示例放到了一起,首先看sizeof方法,我们可以知道各个类型所占字节大小,这里重点说一下int类型,Go语言中的int类型的具体大小是跟机器的 CPU位数相关的。如果 CPU 是 位的,那么int就占4字节,如果 CPU是位的,那么 int 就占8 字节,这里我的电脑是位的,所以结果就是8字节。

       然后我们在看Offsetof函数,我想要修改结构体中成员变量,第一个成员变量是不需要进行偏移量计算的,直接取出指针后转换为unsafe.pointer,在强制给他转换成字符串类型的指针值即可。如果要修改其他成员变量,需要进行偏移量计算,才可以对其内存地址修改,所以Offsetof方法就可返回成员变量在结构体中的偏移量,也就是返回结构体初始位置到成员变量之间的字节数。看代码时大家应该要住uintptr的使用,不可以用一个临时变量存储uintptr类型,前面我们提到过用于指针运算,GC不把uintptr当指针,uintptr无法持有对象。uintptr类型的目标会被回收,所以你不知道他什么时候会被GC掉,那样接下来的内存操作会发生什么样的错误,咱也不知道。比如这样一个例子:

// 切记不要这样使用p1 := uintptr(userNamePointer)nAgePointer := (*uint)(unsafe.Pointer(p1 + unsafe.Offsetof(user.Age)))

       最后看一下Alignof函数,主要是获取变量的对齐值,除了int、uintptr这些依赖CPU位数的类型,基本类型的对齐值都是固定的,结构体中对齐值取他的成员对齐值的最大值,结构体的对齐涉及到内存对齐,我们在下面详细介绍。

经典应用:string与[]byte的相互转换

       实现string与byte的转换,正常情况下,我们可能会写出这样的标准转换:

// string to []bytestr1 := "Golang梦工厂"by := []byte(s1)// []byte to stringstr2 := string(by)

       使用这种方式进行转换都会涉及底层数值的拷贝,所以想要实现零拷贝,我们可以使用unsafe.Pointer来实现,通过强转换直接完成指针的指向,从而使string和[]byte指向同一个底层数据。在reflect包中有·string和slice对应的结构体,他们的分别是:

type StringHeader struct { Data uintptr Lenint}type SliceHeader struct { Data uintptr Lenint Capint}

       StringHeader代表的是string运行时的表现形式(SliceHeader同理),通过对比string和slice运行时的表达可以看出,他们只有一个Cap字段不同,所以他们的内存布局是对齐的,所以可以通过unsafe.Pointer进行转换,因为可以写出如下代码:

func Sizeof(x ArbitraryType) uintptrfunc Offsetof(x ArbitraryType) uintptrfunc Alignof(x ArbitraryType) uintptr0

       上面的代码我们通过重新构造slice header和string header完成了类型转换,其实[]byte转换成string可以省略掉自己构造StringHeader的方式,直接使用强转就可以,因为string的底层也是[]byte,强转会自动构造,省略后的代码如下:

func Sizeof(x ArbitraryType) uintptrfunc Offsetof(x ArbitraryType) uintptrfunc Alignof(x ArbitraryType) uintptr1

       虽然这种方式更高效率,但是不推荐大家使用,前面也提高到了,这要是不安全的,使用当不当会出现极大的隐患,一些严重的情况recover也不能捕获。

内存对齐

       现在计算机中内存空间都是按照byte划分的,从理论上讲似乎对任何类型的变量的访问可以从任何地址开始,但是实际情况是在访问特定类型变量的时候经常在特定的内存地址访问,这就需要各种类型数据按照一定的规则在空间上排列,而不是顺序的一个接一个的排放,这就对齐。

       对齐的作用和原因:CPU访问内存时,并不是逐个字节访问,而是以字长(word size)单位访问。比如位的CPU,字长为4字节,那么CPU访问内存的单位也是4字节。这样设计可以减少CPU访问内存的次数,加大CPU访问内存的吞吐量。假设我们需要读取8个字节的数据,一次读取4个字节那么就只需读取2次就可以。内存对齐对实现变量的原子性操作也是有好处的,每次内存访问都是原子的,如果变量的大小不超过字长,那么内存对齐后,对该变量的访问就是原子的,这个特性在并发场景下至关重要。

       我们来看这样一个例子:

func Sizeof(x ArbitraryType) uintptrfunc Offsetof(x ArbitraryType) uintptrfunc Alignof(x ArbitraryType) uintptr2

       从结果可以看出,字段放置不同的顺序,占用内存也不一样,这就是因为内存对齐影响了struct的大小,所以有时候合理的字段可以减少内存的开销。下面我们就一起来分析一下内存对齐,首先要明白什么是内存对齐的规则,C语言的对齐规则与Go语言一样,所以C语言的对齐规则对Go同样适用:

       对于结构的各个成员,第一个成员位于偏移为0的位置,结构体第一个成员的偏移量(offset)为0,以后每个成员相对于结构体首地址的 offset 都是该成员大小与有效对齐值中较小那个的整数倍,如有需要编译器会在成员之间加上填充字节。

       除了结构成员需要对齐,结构本身也需要对齐,结构的长度必须是编译器默认的对齐长度和成员中最长类型中最小的数据大小的倍数对齐。

       好啦,知道规则了,我们现在来分析一下上面的例子,根据我的mac使用的位CPU,对齐参数是8来分析,int、[]int、string、bool对齐值分别是4、8、8、1,占用内存大小分别是4、、、1,我们先根据第一条对齐规则分析User1:

       第一个字段类型是int,对齐值是4,大小为4,所以放在内存布局中的第一位.

       第二个字段类型是[]int,对齐值是8,大小为,所以他的内存偏移值必须是8的倍数,所以在当前user1中,就不能从第4位开始了,必须从第5位开始,也就偏移量为8。第4,5,6,7位由编译器进行填充,一般为0值,也称之为空洞。第9位到第位为第二个字段B.

       第三个字段类型是string,对齐值是8,大小为,所以他的内存偏移值必须是8的倍数,因为user1前两个字段就已经排到了第位,所以下一位的偏移量正好是,正好是字段C的对齐值的倍数,不用填充,可以直接排列第三个字段,也就是从第位到位第三个字段C.

       第三个字段类型是bool,对齐值是1,大小为1,所以他的内存偏移值必须是1的倍数,因为user1前两个字段就已经排到了第位,所以下一位的偏移量正好是。正好是字段D的对齐值的倍数,不用填充,可以直接排列到第四个字段,也就是从到第位是第三个字段D.

       好了现在第一条内存对齐规则后,内存长度已经为字节,我们开始使用内存的第2条规则进行对齐。根据第二条规则,默认对齐值是8,字段中最大类型程度是,取最小的那一个,所以求出结构体的对齐值是8,我们目前的内存长度是,不是8的倍数,所以需要补齐,所以最终的结果就是,补了7位。

       说了这么多,画个图看一下吧:

       现在你们应该懂了吧,按照这个思路再去分析其他两个struct吧,这里就不再分析了。

       对于内存对齐这里还有一最后需要注意的知识点,空struct不占用任何存储空间,空 struct{ } 大小为 0,作为其他 struct 的字段时,一般不需要内存对齐。但是有一种情况除外:即当 struct{ } 作为结构体最后一个字段时,需要内存对齐。因为如果有指针指向该字段, 返回的地址将在结构体之外,如果此指针一直存活不释放对应的内存,就会有内存泄露的问题(该内存不因结构体释放而释放)。来看一个例子:

func Sizeof(x ArbitraryType) uintptrfunc Offsetof(x ArbitraryType) uintptrfunc Alignof(x ArbitraryType) uintptr3

       简单来说,对于任何占用0大小空间的类型,像struct { }或者[0]byte这些,如果该类型出现在结构体末尾,那么我们就假设它占用1个字节的大小。因此对于test1结构体,他看起来就是这样:`

func Sizeof(x ArbitraryType) uintptrfunc Offsetof(x ArbitraryType) uintptrfunc Alignof(x ArbitraryType) uintptr4

       因此在内存对齐时,最后结构体占用的字节就是8了。

       重点要注意的问题:不要在结构体定义的最后添加零大小的类型

总结

       好啦,终于又到文章的末尾了,我们来简单的总结一下,unsafe 包绕过了 Go 的类型系统,达到直接操作内存的目的,使用它有一定的风险性。但是在某些场景下,使用 unsafe 包提供的函数会提升代码的效率,Go 源码中也是大量使用 unsafe 包。

       unsafe 包定义了 Pointer 和三个函数:

type ArbitraryType inttype Pointer *ArbitraryTypefunc Sizeof(x ArbitraryType) uintptrfunc Offsetof(x ArbitraryType) uintptrfunc Alignof(x ArbitraryType) uintptr

       uintptr 可以和 unsafe.Pointer 进行相互转换,uintptr 可以进行数学运算。这样,通过 uintptr 和 unsafe.Pointer 的结合就解决了 Go 指针不能进行数学运算的限制。通过 unsafe 相关函数,可以获取结构体私有成员的地址,进而对其做进一步的读写操作,突破 Go 的类型安全限制。

       最后我们又学习了内存对齐的知识,这样设计可以减少CPU访问内存的次数,加大CPU访问内存的吞吐量,所以结构体中字段合理的排序可以更节省内存,注意:不要在结构体定义的最后添加零大小的类型。

原文:/post/

       好啦,这篇文章就到这里啦,素质三连(分享、点赞、在看)都是笔者持续创作更多优质内容的动力!

       创建了一个Golang学习交流群,欢迎各位大佬们踊跃入群,我们一起学习交流。入群方式:加我vx拉你入群,或者公众号获取入群二维码

       结尾给大家发一个小福利吧,最近我在看[微服务架构设计模式]这一本书,讲的很好,自己也收集了一本PDF,有需要的小伙可以到自行下载。获取方式:关注公众号:[Golang梦工厂],后台回复:[微服务],即可获取。

       我翻译了一份GIN中文文档,会定期进行维护,有需要的小伙伴后台回复[gin

Golang源码分析Golang如何实现自举(一)

       本文旨在探索Golang如何实现自举这一复杂且关键的技术。在深入研究之前,让我们先回顾Golang的历史。Golang的开发始于年,其编译器在早期阶段是由C语言编写。直到Go 1.5版本,Golang才实现了自己的编译器。研究自举的最佳起点是理解从Go 1.2到Go 1.3的版本,这些版本对自举有重要影响,后续还将探讨Go 1.4。

       接下来,我们来了解一下Golang的编译过程。Golang的编译主要涉及几个阶段:词法解析、语法解析、优化器和生成机器码。这一过程始于用户输入的“go build”等命令,这些命令实际上触发了其他内部命令的执行。这些命令被封装在环境变量GOTOOLDIR中,具体位置因系统而异。尽管编译过程看似简单,但实际上包含了多个复杂步骤,包括词法解析、语法解析、优化器、生成机器码以及连接器和buildid过程。

       此外,本文还将介绍Golang的目录结构及其功能,包括API、文档、C头文件、依赖库、源代码、杂项脚本和测试目录。编译后生成的文件将被放置在bin和pkg目录中,其中bin目录包含go、godoc和gofmt等文件,pkg目录则包含动态链接库和工具命令。

       在编译Golang时,首先需要了解如何安装GCC环境。为了确保兼容性,推荐使用GCC 4.7.0或4.7.1版本。通过使用Docker镜像简化了GCC的安装过程,使得编译变得更为便捷。编译Golang的命令相对简单,通过执行./all即可完成编译过程。

       最后,本文对编译文件all.bash和make.bash进行了深入解析。all.bash脚本主要针对nix系统执行,而make.bash脚本则包含了编译过程的关键步骤,包括设置SELinux、编译dist文件、编译go_bootstrap文件,直至最终生成Golang可执行文件。通过分析这些脚本,我们可以深入了解Golang的自举过程,即如何通过go_bootstrap文件来编译生成最终的Golang。

       总结而言,Golang的自举过程是一个复杂且多步骤的技术,包含了从早期C语言编译器到自动生成编译器的转变。通过系列文章的深入探讨,我们可以更全面地理解Golang自举的实现细节及其背后的逻辑。本文仅是这一过程的起点,后续将详细解析自举的关键组件和流程。

相关推荐
一周热点