1.简单实用node脚本!定时定通过定时任务和2个fetch请求实现网站自动签到功能
2.nodejs原理&源码赏析(7)Node.js中的源码事件循环,定时器和process.nextTick
3.nodejs EventEmitter 源码分析
4.node stream源码分析 — Readable
5.node-pre-gyp以及node-gyp的定时定源码简单解析(以安装sqlite3为例)
6.Node.js 时序异步API:setTimeout、setImmediate、源码nextTick、定时定queueMicrotask(上)
简单实用node脚本!源码iglistkit源码通过定时任务和2个fetch请求实现网站自动签到功能
实现网站自动签到功能的定时定Node脚本通过定时任务和两个fetch请求实现,简化了手动操作流程,源码确保签到任务连续进行,定时定避免因忘记签到而导致流量损失。源码此脚本适用于需要每日签到以获取积分、定时定金币、源码流量或类似奖励的定时定网站。
实现方案的源码核心步骤包括:分析登录接口、获取登录状态信息、定时定发起签到请求以及设置定时任务。具体操作如下:
1. **分析登录接口**:通过发送登录请求获取响应头中的`Set-Cookies`信息,这是实现自动登录的关键。利用`fetch`API在浏览器网络环境中复制并转换为Node.js可执行的请求格式。解析响应头以提取必要的登录状态参数。
2. **发起签到请求**:分析签到接口,重点关注请求头中的`Cookie`参数。该参数应包含从登录接口获取的登录状态信息。使用提取的参数构建带有`Cookie`的签到请求。
3. **设置定时任务**:借助`node-cron`库,实现自动化定时签到。注意,本地运行时需考虑电脑睡眠问题,可能需要设置电脑不进入睡眠模式,或在服务器上部署。
**注意事项**:在本地测试过程中,如果使用Windows系统,需特别注意电脑睡眠模式对定时任务的影响。若需在每天的随机时间点执行签到,需设计额外的逻辑,如在每天固定时间开启定时任务,然后在该任务内随机选择执行时间。示例代码及项目源码可在指定链接中找到,linux 源码安装gcc供参考与使用。
nodejs原理&源码赏析(7)Node.js中的事件循环,定时器和process.nextTick
事件循环是Node.js的核心机制,确保了其非阻塞I/O模型的实现。尽管JavaScript在Node.js中是单线程运行的,它却能利用系统内核的多线程特性处理并发任务。Node.js在开始执行时初始化事件循环,处理脚本文件或REPL环境中的异步调用。事件循环通过检查异步I/O、定时器和process.nextTick调用,然后进入各个阶段,处理回调函数。每个阶段维护一个先进先出的回调队列,处理与阶段相关操作后执行队列中的回调,直至队列为空或达到最大函数执行数量。系统操作回调、定时器和处理关闭回调的阶段各有功能。setImmediate()与setTimeout()相似,但执行顺序受调用上下文影响,setImmediate()在I/O周期中通常优先执行。process.nextTick()则在当前操作执行后立即执行回调,不受事件循环阶段限制,但需谨慎使用以防阻塞事件循环。
nodejs EventEmitter 源码分析
EventEmitter 是 Node.js 中的事件管理器核心逻辑简单,主要聚焦于事件与函数或函数数组之间的关联。在 v..1 版本中,核心逻辑在实例的 _events 属性上展开,该属性是一个对象,其键为事件名称,值为事件对应的函数或函数数组。所有方法均围绕 _events 展开。
构造函数初始化 _events 属性,若实例本身未定义,则执行此操作。此操作涉及对实例原型的引用,通过 ObjectGetPrototypeOf 的使用来实现。函数 on 允许用户注册事件监听器,外部控件操作源码逻辑简单明了:判断同名事件是否已注册,无则注册;已有则将新监听器加入已有函数数组中。emit 方法触发事件,根据事件名称获取对应函数或函数数组,使用 ReflectApply 调用。此方法与 Function.prototype.apply 类似,但提供了更简洁的实现。
off 方法与 on 方法相似,但逻辑相反。它获取事件监听器,若为函数,则直接删除;若为数组,则遍历删除指定监听器。此方法同样简洁,直接操作事件列表。
Reflect API 的使用在不同版本的 EventEmitter 中逐渐增多,例如将 Object.keys 替换为 Reflect.ownKeys,以更好地处理 Symbol 类型的事件名。反射方法,如 Reflect.apply,尽管在 V8 中源码显得复杂,但其执行逻辑与 Function.prototype.apply 相似,性能上并无显著提升,但提升了代码的可读性。
在最新版本 v.5.0 中,EventEmitter 的实现中采用 Reflect.ownKeys 更为合理,因为此方法能有效避免返回数组中无 Symbol 的问题。EventEmitter 的构造函数与 Stream 的关系展示了如何利用继承来扩展功能。Stream 通过继承 EventEmitter,实现了更简洁的 class 写法,未来可能进一步简化。
此外,文章还讨论了私有属性的使用,以及简易版 EventEmitter 的实现。简易版 EventEmitter 基本逻辑简洁,但不包含参数校验、异常处理和性能优化等生产环境所需的bat远控源码功能。实际生产环境中的 EventEmitter 实现则需额外处理这些复杂情况。
node stream源码分析 — Readable
Stream在Node.js中是一种数据传输的抽象机制,它分为四种类型:流、可读流(Readable)、可写流(Writable)和可缓冲流(Transform)。其中,可读流(Readable)用于从外部数据源读取数据。
可读流有两种模式:流动模式和非流动模式。非流动模式在监听到'data'事件时,直接读取数据而不暂停,并不将数据存储到缓存区。流动模式则在监听到'readable'事件时,将数据放入缓存区,并等待'writable'调用来判断是否有空位,以此来决定是否暂停。
以下是对可读流(Readable)的源码分析。首先,让我们查看Readable的源码。源码文件位于'_stream_readable.js'中。
在'fs.js'文件中,我们可以看到创建读取流的源码,而'Readable'则位于'_stream_readable.js'文件中。
在'fs.js'文件中,我们可以通过调用`fs.createReadStream`来创建读取流。在'Readable'源码文件中,我们可以看到Node.js实现的可读流类,它提供了读取数据的功能,并且支持缓冲和流式读取。
node-pre-gyp以及node-gyp的源码简单解析(以安装sqlite3为例)
在Node.js开发中,确保模块跨平台性至关重要,尤其当涉及到使用C/C++原生代码的模块,如SQLite3。让我们通过一个实例来理解安装这种原生模块的过程,以SQLite3为例。项目初始化
首先,创建一个基础的Node.js项目,我们开始安装SQLite3。bs排号源码安装SQLite3
执行安装命令后,你会看到命令行输出关键信息:node-pre-gyp的引入
在安装过程中,你会遇到node-pre-gyp,这个工具与node-gyp和gyp紧密相关。gyp是一个用于生成项目文件的构建工具,它为Chromium项目生成IDE项目文件,如Visual Studio和Xcode。而node-gyp则是专为Node.js Addons(原生模块)编译设计的,它允许在本地编译C/C++代码。node-pre-gyp的作用
为了简化每次安装时的平台编译工作,node-pre-gyp允许预先为常见平台生成二进制文件。当项目尝试安装时,它会优先查找预编译的二进制包,如果找不到,才会转而依赖node-gyp进行源码编译。安装流程
当我们使用`npm install sqlite3`时,实际上执行了`node-pre-gyp install --fallback-to-build`。安装流程包括:检查node-pre-gyp是否已安装,如果没有,npm会自动安装。
node-pre-gyp查找预编译二进制包,如果存在,则直接使用。
如果没有找到,使用node-gyp进行源码编译。
深入了解SQLite3安装
查看sqlite3的package.json,`scripts`部分包含了`node-pre-gyp install`命令。npm会根据这个脚本执行安装过程。源码编译与node-gyp
node-gyp的`build.js`负责执行编译任务,通过`gyp`工具生成特定平台的项目文件,如Windows的vcxproj,然后使用MSBuild编译。node-pre-gyp与node-gyp的交互
node-pre-gyp的`do_build`模块调用node-gyp build,执行具体的编译操作,确保模块能在目标平台上正确工作。Node.js 时序异步API:setTimeout、setImmediate、nextTick、queueMicrotask(上)
本文介绍Node.js版本v..0和libuv版本v1..2在Unix平台下的时序异步API:setTimeout和setInterval,以及nextTick和queueMicrotask的上篇内容。1. 定时器 setTimeout
setTimeout是非I/O相关的异步API,Node.js通过js侧定时器调度管理和libuv的uv_timer_t执行层实现。执行时机在事件循环的定时器阶段。setInterval与setTimeout原理相同,仅多了循环控制。1.1 setTimeout源码
Node.js中的setTimeout并非完全遵循规范,返回的是Timeout类实例而非整数。Timeout类管理超时元数据,如回调函数。插入新定时器到js的Map和优先队列,确保按时间顺序执行。1.2 优先队列与Map结构
定时器的插入操作通过insert(),利用Map和按超时时间排序的链表实现。队列结构确保了定时器按时间先后顺序执行。1.3 定时器启动与执行
scheduleTimer()启动定时器,与Environment环境类相关,用定时器句柄uv_timer_s控制执行。在libuv中,实际只有一个uv_timer_t,Node.js通过维护Map和优先队列进行调度优化性能。1.3.4 js侧回调函数:processTimers
processTimers是回调函数的核心,从优先队列取出超时的Timeout执行,确保按时间顺序触发回调。2. 定时器 setInterval
setInterval的源码与setTimeout类似,仅在实例化时设置重复执行标志。执行机制完全一致。总结
本文详细阐述了setTimeout和setInterval的工作原理,包括异步调度、Map和优先队列在Node.js中的应用,以及从事件循环到回调函数的执行流程。nodejs .0.0源码分析之setImmediate
深入解析Node.js .0.0中setImmediate的实现机制
从setImmediate函数的源码入手,我们首先构建一个Immediate对象。这个对象的主要任务分为两个方面。其一,生成一个节点并将其插入到链表中。其二,在链表中尚未插入节点时,将其插入到libuv的idle链表中。
这一过程展示了setImmediate作为一个生产者的作用,负责将任务加入待执行队列。而消费者的角色则在Node.js初始化阶段由check阶段插入的节点和关联的回调函数承担。
具体而言,当libuv执行check阶段时,CheckImmediate函数被触发。此函数随后执行immediate_callback_function,对immediate链表中的节点进行处理。我们关注immediate_callback_function的设置位置,理解其实际功能。
最终,processImmediate函数成为处理immediate链表的核心,执行所有待处理任务。这就是setImmediate的执行原理,一个简洁高效的异步任务调度机制。
你真的了解 setTimeout 么?聊聊 setTimeout 的最小延时问题(附源码细节)
在 JavaScript 中,setTimeout 是不可或缺的工具,它允许你设定代码在一定时间后执行。尽管不是 ECMAScript 标准的一部分,但大多数 JavaScript 环境都支持它。HTML5 标准对setTimeout 的行为有所规定:当嵌套层级超过 5 层且 timeout 小于 4ms 时,会设定一个最小间隔为 4ms。让我们通过实例来看看实际的实现情况:
在 Chrome 中,当嵌套超过 5 层时,timeout 会设定为 4ms,例如:
输出显示,前 4 次的 timeout 都是 0ms,之后的间隔则超过 4ms。
然而,不同 JavaScript 运行时(如 nodejs、deno 和 bun)的setTimeout 行为有所差异。例如:
-
nodejs 的 v..0 版本中,没有 4ms 的最小延时限制,每次调用大约有 1ms 的间隔。
-
deno v1..2 中,超过 5 层嵌套后有 4ms 的最小延时,但前几次调用也有一小段间隔。
-
bun v0.5.7 的行为更为特殊,它在短时间内执行了大量回调,因为setTimeout 没有延时设置,实际上与事件循环次数有关。
深入了解这些运行时的源码,setTimeout 的实现与浏览器引擎(如 Chromium)的 Blink 引擎中的 DOMTimer 类相关。例如,在 Chromium v.0..0 中,如果嵌套层级过高且 timeout 小于某个阈值,会设置为最小间隔以防止性能问题。
在 nodejs 中,setTimeout 的限制在内部 timers.js 文件中实现,确保 after 值在合理范围内。而在 deno 中,通过 Rust 的 tokio 库实现延时限制,延时精度取决于所用的平台。
Bun,作为一款性能优化的运行时,对setTimeout 的 0ms 处理独特,0ms 的 timeout 直接加入任务队列,导致循环次数激增。
总的来说,setTimeout 的行为会根据运行时环境的差异而变化,开发者在使用时需要了解这些特性以确保代码的正确执行。
NodeController 源码分析
本文主要分析NodeLifecycleController在Kubernetes v1.版本中的功能及其源码实现。NodeLifecycleController主要负责定期监控节点状态,根据节点的condition添加相应的taint标签或直接驱逐节点上的Pod。
在解释NodeLifecycleController功能之前,先了解一下taint的作用。在NodeLifecycleController中,taint的使用效果体现在节点的taint上,影响着Pod在节点上的调度。
NodeLifecycleController利用多个feature-gates进行功能扩展。在源码分析部分,我们以Kubernetes v1.版本为例,深入研究了启动方法、初始化流程、监听对象以及核心逻辑。
启动方法startNodeLifecycleController首先调用lifecyclecontroller.NewNodeLifecycleController进行初始化,并传入组件参数及两个feature-gates:TaintBasedEvictions和TaintNodesByCondition。随后调用lifecycleController.Run启动控制循环,监听包括lease、pods、nodes、daemonSets在内的四种对象。
在初始化过程中,多个默认参数被设定,如--enable-taint-manager等。NewNodeLifecycleController方法详细展示了NodeLifecycleController的结构和核心逻辑,包括taintManager和NodeLifecycleController的监听和处理机制。
Run方法是启动方法,它启动多个goroutine执行controller功能,关键逻辑包括调用多个方法来完成核心功能。
当组件启动时,若--enable-taint-manager参数为true,taintManager将启用,确保当节点上的Pod不兼容节点taint时,会将Pod驱逐。反之,已调度至该节点的Pod将保持存在,新创建的Pod需兼容节点taint以调度至该节点。
tc.worker处理来自channel的数据,优先处理nodeUpdateChannels中的数据。tc.handleNodeUpdate和tc.handlePodUpdate分别处理节点更新和Pod更新,最终调用tc.processPodOnNode检查Pod是否兼容节点的taints。
NodeLifecycleController中的nodeInformer监听节点变化,nc.doNodeProcessingPassWorker添加合适的NoSchedule taint和标签。当启用了TaintBasedEvictions特性,nc.doNoExecuteTaintingPass处理节点并根据NodeCondition添加taint,以驱逐Pod。未启用该特性时,nc.doEvictionPass将直接驱逐节点上的Pod。
nc.monitorNodeHealth持续监控节点状态,更新节点taint或驱逐Pod,并为集群中的所有节点划分zoneStates以设置驱逐速率。nc.tryUpdateNodeHealth更新节点状态数据,判断节点是否已进入未知状态。
本文综上所述,深入剖析了NodeLifecycleController的功能、实现机制以及关键逻辑,为理解和优化Kubernetes集群提供了参考。
nodejs之setImmediate源码分析
在lib/timer.js文件中,setImmediate函数创建了一个回调队列,等待调用者提供的回调函数执行。这个队列的处理由setImmediateCallback函数负责,该函数在timer_wrapper.cc文件中定义,接受processImmediate作为参数。在setImmediateCallback函数内部,回调信息被保存在环境env中。
具体实现中,set_immediate_callback_function宏定义了在env中保存回调函数的函数。此函数在env.cc的CheckImmediate中执行,而CheckImmediate的执行时机是在Environment::Start阶段,由uv_check_start函数在libuv库中负责。
uv_check_start函数将一个handle添加到loop的队列中,然后在uv_run循环中执行注册的CheckImmediate函数。此函数最终会调用nodejs的processImmediate函数,实现setImmediate的回调执行。
需要注意的是,setImmediate与setTimeout的执行顺序并不确定。在uv_run中,定时器的代码比uvrun_check早执行,但在执行完定时器后,若在uv__run_check之前新增定时器和执行setImmediate,setImmediate的回调会优先执行。
2024-11-30 08:53
2024-11-30 07:36
2024-11-30 07:19
2024-11-30 07:13
2024-11-30 06:30
2024-11-30 06:18