1.一文解决printf()是源码如何与UART外设驱动函数“勾搭”起来的?
2.困惑多年,为什么printf可以重定向?
3.printfè¾åº
4.cè¯è¨è¾åº~~~~~
一文解决printf()是详解如何与UART外设驱动函数“勾搭”起来的?
在嵌入式编程中,输出调试信息是源码定位和分析问题的重要手段。本文将通过 IAR 开发环境探讨如何利用微控制器内的详解硬件 UART(通用异步接收/发送)外设实现打印信息输出。首先,源码让我们了解一下打印输出的详解网站源码net整体软硬件结构。硬件方面,源码涉及到 PC 主机、详解目标板 MCU、源码串口线(RS 或 TTL 串口转 USB 模块)。详解在软件层面,源码PC 需要串口调试助手,详解目标板的源码蓝思源码网 MCU 应用程序则需包含打印输出代码。当 MCU 程序运行时,详解通过 UART 外设将打印字符物理传输至 PC 上的源码调试助手,实现信息显示。
深入探讨到 C 标准头文件 stdio.h,这是 C 语言提供的输入输出标准库,由工具链自动提供,不需用户手动添加。stdio.h 包含了如 printf() 等函数的定义。在嵌入式 IAR 环境下,虽然这些函数的底层实现细节可能不为用户所见,但它们确实与 UART 外设驱动函数紧密相连。因此,tcp校验和源码了解 printf() 等函数如何与 UART 外设驱动交互是关键。
接下来,我们将关注 UART 外设驱动函数。例如,恩智浦 i.MXRT MCU 的 LPUART 驱动库提供了 LPUART_WriteBlocking() 和 LPUART_ReadBlocking() 等函数,用于数据发送和接收。虽然这些函数仅支持基本的数据传输,但通过结合 printf() 的格式化功能,可以实现更丰富的打印输出。
IAR 软件对 C 标准 I/O 库的支持是通过其预编译的底层接口实现的。在 IAR 中编译和链接程序时,用户可以通过查看生成的红包跳转页源码 .map 文件来了解函数的来源。本文将通过一个示例工程演示如何配置 IAR,以轻松发现底层接口函数,并了解如何实现与硬件 UART 外设交互的底层接口 __write() 函数。通过配置 Library 设置、选择适当的实现选项,用户能够看到 __write() 函数的原型及其依赖的接口函数。
实现底层接口 __write() 函数需要关注 IAR 提供的 DLIB 库中关于 I/O 的相关源码实现。在 DLIB 库中,可以找到实现 __write() 函数原型及其示例代码的文件。通过将 LPUART_WriteBlocking() 函数集成到 __write() 实现中,可以解决报错问题。在工程编译完成后,模拟股票平台源码用户可以通过查看生成的 .map 文件来了解 DLIB 库的组成和具体实现。
通过上述步骤,用户可以轻松理解 IAR 环境下 printf() 函数与 UART 外设驱动函数之间的交互过程,实现高效的调试信息输出。本文旨在提供一个全面的视角,帮助嵌入式开发者深入理解这一关键组件的集成与工作原理。
困惑多年,为什么printf可以重定向?
在编程的世界里,printf函数的重定向问题一直是个让初学者疑惑的点。为什么printf函数可以重定向到fputc函数?这背后有什么原理?让我们一起来深入探讨。 首先,让我们理解printf函数的底层机制。在实际应用中,printf函数最终会调用fputc函数来实现字符串输出。然而,fputc函数是标准库提供的,你无法直接修改它的源码。那么,如何在不修改标准库源码的情况下,将输出重定向到特定的串口或其他设备呢? 答案在于符号属性弱化(weak)。这个特性允许程序员注册一个回调函数,使得printf函数调用这个回调函数进行字符串输出,从而实现输出位置的改变。标准库正是利用了这一特性,避免了直接修改源码的复杂操作。 那么,符号属性弱化(weak)到底有什么好处呢?让我们来一一列举:别人不需要提供源码,通过这个特性,你可以在不获取源码的情况下实现输出位置的改变。
即使没有源码,你也可以通过注册回调函数间接地改变输出位置,无需修改标准库。
如果有源码,你不需要删除别人的代码去重新实现,可以保留原有的代码,方便维护。
不需要使用回调函数进行注册,可以直接实现自己的版本,操作简单。
存在默认函数实现,即使不重新编写fputc函数,编译器也不会报错,保证了程序的稳定性。
要查看编译器链接的函数,只需打开map文件,搜索对应函数名即可。你会发现,即使主文件中也有同名函数,编译器链接的往往是其他文件中的函数,原因就在于主文件中函数的符号属性被弱化了。 理解了这个机制,你就能明白为什么在任何文件内定义中断处理函数,而即使没有定义,编译器也不会报错。这就是符号属性弱化在中断处理函数中的应用。 此外,对于实现不同的串口打印输出,使用vsprintf(或更安全的vsnprintf)函数是一个更好的选择。它允许你指定输出到特定的缓存空间,从而实现自定义的printf函数,灵活性更高。 通过深入理解符号属性弱化这一特性,你不仅能够解决printf函数重定向的问题,还能更好地理解C语言的动态链接机制。如果你对这个解释感到满意,不妨点赞以示鼓励吧!printfè¾åº
ä¸é¢æ¯printfçæºä»£ç ãå¯ä»¥çå°ï¼
1ï¼å¦æfield_widthè¾å ¥æ¯'*'çè¯ï¼ä¼ä»va_argå½æ°åå¼ã
å¦æåå¾çè¿åå¼field_widthå°äº0çè¯ï¼ååç»å¯¹å¼ã
è¿å¯ä»¥è§£éï¼ä¸ºä»ä¹-7å7çæææ¯ä¸æ ·çã
2ï¼å¦æprecision è¾å ¥æ¯'*'çè¯ï¼ä¼ä»va_argå½æ°åå¼ã
å¦æåå¾çè¿åå¼field_widthå°äº0çè¯ï¼åå0å¼ã
è¿å¯ä»¥è§£éï¼ä¸ºä»ä¹-2å0çæææ¯ä¸æ ·çã
å ¶å®ï¼åªè¦precision å¼å°äº0ï¼é½ä¼å0çæææ¯ä¸æ ·çã
楼主å¯ä»¥è¯è¯çã
/* get field width */
field_width = -1;
if (is_digit(*fmt))
field_width = skip_atoi(&fmt);
else if (*fmt == '*') {
++fmt;
/* it's the next argument */
field_width = va_arg(args, int);
if (field_width < 0) {
field_width = -field_width;
flags |= LEFT;
}
}
/* get the precision */
precision = -1;
if (*fmt == '.') {
++fmt;
if (is_digit(*fmt))
precision = skip_atoi(&fmt);
else if (*fmt == '*') {
++fmt;
/* it's the next argument */
precision = va_arg(args, int);
}
if (precision < 0)
precision = 0;
}
cè¯è¨è¾åº~~~~~
printf()å½æ°æ¯æ ¼å¼è¾åºå½æ°ï¼æå°è¾åºçææï¼"%æ ¼å¼\n"éé¢å å«ä¸¤å±ææï¼ï¼â%æ ¼å¼âè¡¨ç¤ºä½ è¾åºåéçæ ¼å¼ï¼æ¯å¦ä½ è¾åºæ´å½¢ï¼é£ä¹å°±æ¯%d,å¦æä½ åæ%Cé£ä¹å°±ä¸ä½ è¾åºåéçç±»åå°±ä¸å¹é ï¼å°±ä¸å¯¹äºï¼\næ¯å车æ¢è¡çææï¼æ¯å¦ä½ è¾å ¥ä¸¤ä¸ªåéprintfâ%d\n,%dâé£ä¹ç¬¬ä¸åéå°±ä¼æ¾ç¤ºå第ä¸è¡ï¼ç¬¬äºä¸ªåéå°±æ¾ç¤ºå¨ç¬¬äºè¡ãprintf("%æ ¼å¼\n"+åé)ä¸çåéä»£è¡¨ä½ è¦è¾åºçå 容