欢迎来到皮皮网网首页

【网站源码套取】【七夕引流源码】【酒店管理系统 java源码】加速源码搭建源码_关于使用源码方式安装加速引擎

来源:源码资本爆雷 时间:2024-11-24 16:18:00

1.[推理部署]👉Mac源码编译TensorFlow C++指北
2.使用FastBuild给UnrealEngine编译Shader加速
3.为什么unreal虚幻引擎源码编译如此慢,加速加速有方法改进吗?
4.UE 打包引擎源码
5.Tensorflow 编译加速器 XLA 源码深入解读
6.Docker源码安装附内网镜像安装演示

加速源码搭建源码_关于使用源码方式安装加速引擎

[推理部署]👉Mac源码编译TensorFlow C++指北

       在Mac环境下编译TensorFlow C++源码,需要完成以下步骤,源码源码源码引擎以避免可能的搭建编译问题,确保顺利构建。关于

       首先,使用确认系统环境满足要求。安装网站源码套取需有Xcode和Command Line Tools,加速加速JDK 1.8.0版本以支持编译过程中所需的源码源码源码引擎Java环境,以及Bazel工具,搭建TensorFlow依赖此工具进行编译。关于特别注意Bazel版本需与TensorFlow对应,使用如TensorFlow 1.对应Bazel 0..1。安装

       接下里,加速加速安装依赖,源码源码源码引擎包括JDK和Bazel。搭建JDK安装时需检查电脑中是否已安装,并确保正确安装。使用HomeBrew安装Bazel,通过命令行接受协议,并使用`--user`指令确保安装在个人目录的`bin`文件夹下,同时设置`.bazelrc`路径为`$HOME/.bazelrc`。

       安装自动化工具`automake`和使用Python3.7.5在虚拟环境中构建TensorFlow C++源码。推荐使用清华镜像源加速`pip`的安装过程。通过`git clone`方式下载TensorFlow源码,确保checkout至r1.分支。调整域名映射以提升`git clone`速度。

       进行编译选项配置,通常在TensorFlow文件夹内运行命令,根据提示选择默认选项。

       开始编译TensorFlow,此过程可能需要较长时间,完成后,应在`bazel-bin/tensorflow`目录下找到编译好的`libtensorflow_cc.so`和`libtensorflow_framework.1.dylib`文件。

       若遇到`Undefined symbols for architecture x_: “_CFRelease”`错误,这通常与创建软连接有关,无需特别处理。若需要手动安装额外依赖库,如Eigen3,可参考相关指南。七夕引流源码

       编译完成后,可对C++接口进行测试,验证编译过程的正确性。通常情况下,Mac下的TensorFlow 1. C++源码编译完成。

       最后,编译TFLite,生成的动态链接库将保存在指定目录下。在`CMakelists.txt`文件中增加对应配置项,以完成TFLite的构建。

       总结而言,Mac下TensorFlow 1. C++源码编译及TFLite的构建,需要遵循上述步骤,并确保环境与工具版本的兼容性,以顺利进行编译过程。Linux系统下的编译方式相似,但具体细节可能有所不同。

使用FastBuild给UnrealEngine编译Shader加速

       提升Unreal Engine Shader编译速度的实操指南

       使用FastBuild加速编译Shader,优化流程,从环境搭建到具体配置,详细步骤如下:

       1. 下载并安装FastBuild

       前往FastBuild官网,下载适用于Windows平台的FastBuild可执行文件,解压后获得FBuild.exe和FBuildWorker.exe。

       2. 替换引擎目录文件

       将FBuild.exe和FBuildWorker.exe复制到`Engine\Extras\ThirdPartyNotUE\FASTBuild\Win`目录下,替换现有文件。

       3. 创建网络共享文件夹

       创建一个网络共享文件夹,确保所有参与编译的机器都能访问。步骤如下图所示。

       4. 配置环境变量

       在系统变量中添加`FASTBUILD_BROKERAGE_PATH`,值为创建的网络路径。

       5. 运行测试联机环境

       确认网络文件夹是否可访问。运行`FBuildWorker.exe`,界面应显示网络文件夹中的发起机IP,并检查网络路径中是否存在发起机IP的文件。

       6. 开启Shader编译

       在项目`DefaultEngine.ini`中添加配置以开启Shader编译。

       7. 远程机配置

       将FBuild.exe和FBuildWorker.exe拷贝至远程机,确保添加环境变量`FASTBUILD_BROKERAGE_PATH`与发起机一致。远程机运行`FBuildWorker.exe`,酒店管理系统 java源码确认连接成功。

       8. 运行Shader编译

       打开项目Shader编译开关,直接运行编译Shader。如需测试,删除`DerivedDataCache`文件夹,确保Shader编译。

       进阶步骤

       根据需要,调整编译参数,限制CPU使用量,开启编译缓存,使用更多远程机加速编译。

       编译UE4项目代码

       如果需要编译UE4项目代码,需修改FastBuild源码。下载源码,配置环境变量和路径,使用命令行编译FastBuild,确保所有配置与编译Shader一致。

       开启编译代码Cache

       通过调整`BuildConfiguration.xml`文件,启用编译缓存,显著提升编译速度。

       进阶优化

       限制本地编译代码的核心数,避免CPU负载过高。利用编译缓存和更多远程机,提高整体编译效率。

       使用FBDashboard监控

       启动FBDashboard.exe,查看编译进度、使用资源等详细信息,便于调整优化。

       结语

       通过上述实操指南,可有效利用FastBuild加速Shader及UE4项目代码编译。如有疑问或建议,欢迎在下方留言交流。

为什么unreal虚幻引擎源码编译如此慢,有方法改进吗?

       为何虚幻引擎源码编译过程缓慢?确实,许多开发者在使用虚幻引擎时,会遇到编译时间过长的问题,这可能对项目进度造成影响。幸运的是,存在多种策略帮助优化编译速度。福州溯源码燕窝分销首先,考虑使用IncrediBuild、FastBuild或Horde等工具,它们能显著提升编译效率。请确保所购买的许可证支持当前处理器的核心数量,否则加速效果受限。

       其次,性能卓越的CPU是关键。选择高性能CPU将直接影响编译速度。请注意,CPU的性能直接影响编译加速效果,购买CPU时,务必检查与当前硬件匹配的许可证类型。

       将引擎源码与项目放入固态硬盘能显著提升读取和写入速度,加速编译过程。SSD的高速性能可极大地减少编译时间,提高开发效率。

       第三,禁用项目中不必要的插件也能有效缩短编译时间。每个插件都会增加编译负担,因此,精简配置能提高编译效率。

       在Windows 操作系统下,遇到使用小核而非大核的情况时,可以尝试使用Process Lasso工具。此工具有助于调整CPU使用策略,确保大核得到充分利用。然而,在Windows 系统上,这一问题通常不会出现。

       综上所述,通过优化硬件选择、利用编译加速工具、改进项目配置以及合理管理CPU使用策略,开发者可以有效提升虚幻引擎源码的编译速度,从而加速项目开发进程。

UE 打包引擎源码

       本文作为个人记录使用。

       1. 获取引擎源码:在GitHub上下载对应版本源码(需订阅虚幻引擎并与你的回民街离不夜城源码虚拟引擎账号关联)。安装Microsoft Visual Studio,建议选择读写速度较快的硬盘,并预留足够空间。官方文档:docs.unrealengine.com/4...

       unrealengine.com/zh-CN/...

       运行setup.bat开始下载,可加参数加速下载(--threads=N表示用N个线程加速下载)。网速慢时,可能需要更长时间。

       完成下载后,运行GenerateProjectFiles.bat生成解决方案。

       2. 构建源码:编译源码时,可适当修改源码hh。具体操作可参考官方文档:docs.unrealengine.com/4...

       记得先Build AutomationTool。

       我下载了Windows SDK:developer.microsoft.com...(VS中的可能还不够,猜测)。

       再次Build时,遇到一个问题:

       我采取的有效方法:在HoloLensTargetPlatform.Build.cs中添加了一行参数bEnableUndefinedIdentifierWarnings = false;

       3. 开始打包:通过cmd执行RunUAT.bat,等待打包完成。顺利的话,将在/引擎目录/LocalBuilds/Engine下找到打包好的包。我的路径是:E:\UnrealEngine-4..2-release\Engine\Build\BatchFiles\RunUAT.bat,参数:BuildGraph -target="Make Installed Build Win" -script=Engine/Build/InstalledEngineBuild.xml -clean。

       详细的脚本选项可参考官方文档:docs.unrealengine.com/4...

       接下来就开踩。安装vs时遇到错误,后来发现不用下载,修改参数即可。我使用的是vs,不知道vs是否可行。

       这种就是配置对应的环境。想必后面还有ERROR: Platform IOS is not a valid platform to build,我都学会抢答了(安装ios环境需要apple id,我没有)。

       因为我并不需要打包其他平台,所以修改了参数,仅打包支持Window平台的BuildGraph -target="Make Installed Build Win" -script=Engine/Build/InstalledEngineBuild.xml -set:WithWin=true -set:WithWin=true -set:WithMac=false -set:WithAndroid=false -set:WithIOS=false -set:WithTVOS=false -set:WithLinux=false -set:WithLinuxAArch=false -set:WithLumin=false -set:WithLuminMac=false -set:WithHoloLens=false -set:WithClient=true -set:WithServer=true -set:VS=true -clean。

       打包成功提示succeed。

       其他:blog.csdn.net/qq_... store.algosyntax.com/tu... UE4使用BuildGraph构建二进制版本虚幻引擎 docs.unrealengine.com/4... Android SDK的下载与安装 cnblogs.com/KisonDu/p/1... iOS和tvOS开发要求 打包插件必须安装vs ? github.com/EpicGames/Un...

Tensorflow 编译加速器 XLA 源码深入解读

       XLA是Tensorflow内置的编译器,用于加速计算过程。然而,不熟悉其工作机制的开发者在实践中可能无法获得预期的加速效果,甚至有时会导致性能下降。本文旨在通过深入解读XLA的源码,帮助读者理解其内部机制,以便更好地利用XLA的性能优化功能。

       XLA的源码主要分布在github.com/tensorflow/tensorflow的多个目录下,对应不同的模块。使用XLA时,可以采用JIT(Just-In-Time)或AOT( Ahead-Of-Time)两种编译方式。JIT方式更为普遍,对用户负担较小,只需开启一个开关即可享受到加速效果。本文将专注于JIT的实现与理解。

       JIT通过在Tensorflow运行时,从Graph中选择特定子图进行XLA编译与运行,实现了对计算图的加速。Tensorflow提供了一种名为JIT的使用方式,它通过向Tensorflow注册多个优化PASS来实现这一功能。这些优化PASS的执行顺序决定了加速效果。

       核心的优化PASS包括但不限于EncapsulateXlaComputationsPass、MarkForCompilationPass、EncapsulateSubgraphsPass、BuildXlaOpsPass等。EncapsulateXlaComputationsPass负责将具有相同_xla_compile_id属性的算子融合为一个XlaLaunch,而XlaLaunch在运行时将子图编译并执行。

       AutoClustering则自动寻找适合编译的子图,将其作为Cluster进行优化。XlaCompileOp承载了Cluster的所有输入和子图信息,在运行时通过编译得到XlaExecutableClosure,最终由XlaRunOp执行。

       在JIT部分,关键在于理解和实现XlaCompilationCache::CompileStrict中的编译逻辑。此过程包括两步,最终结果封装在XlaCompilationResult和LocalExecutable中,供后续使用。

       tf2xla模块负责将Tensorflow Graph转化为XlaCompilationResult(HloModuleProto),实现从Tensorflow到XLA的转换。在tf2xla中定义的XlaOpKernel用于封装计算过程,并在GraphCompiler::Compile中实现每个Kernel的计算,即执行每个XlaOpKernel的Compile。

       xla/client模块提供了核心接口,用于构建计算图并将其转换为HloModuleProto。XlaBuilder构建计算图的结构,而XlaOpKernel通过使用这些基本原语描述计算过程,最终通过xla_builder的Build方法生成HloComputationProto。

       xla/service模块负责将HloModuleProto编译为可执行的Executable。该过程涉及多个步骤,包括LLVMCompiler的编译和优化,最终生成适合特定目标架构的可执行代码。此模块通过一系列的优化pass,如RunHloPasses和RunBackend,对HloModule进行优化和转换,最终编译为目标代码。

       本文旨在提供XLA源码的深度解读,帮助开发者理解其工作机制和实现细节。如有问题或疑问,欢迎指正与交流,共同探讨和学习。期待与您在下一篇文章中再次相遇。

Docker源码安装附内网镜像安装演示

       系统版本要求源码包下载

       官网下载地址(download.docker.com/lin...)

       我这里已docker-...tgz该版本做演示

       1.下载源码包文件到本地

       2.通过远程连接工具(xShell、SecureCRT等将源码包文件上载到服务器自定义目录)

       3.解压文件

       4.配置docker为service服务

       5.添加可执行权限

       注:如遇到启动不成功可通过状态查询、/var/log/messages/运行日志或直接使用dockerd命令查看错误信息,如还解决不了建议服务器重启一下在运行docker启动命令

       6.配置镜像加速

       7.检查安装版本内网下载镜像

       注:使用docker pull拉取镜像的时候需要网络,但是项目部署一般都是在内网。内网访问不了外网,所以需要在外网环境下把需要的镜像拉取下来打包,然后拷贝到内网,载入到内网的docker

       1.在外网机器上拉取mysql镜像,可以看到外网的docker已经拉取了镜像。

       2.将镜像打包成tar压缩包

       3.将打包好的mysql镜像包通过远程工具下载到本地

       4.拷贝到内网linux服务器并载入docker

       docker基础命令使用(扩展)下载镜像:(hub.docker.com/search/官网镜像地址)

       docker pull [IMAGE_NAME]:[TAG] #命令格式

       docker pull mysql:8.0 #下载mysql8.0镜像(不指定默认下载最新版本)

       查看当前镜像版本

       docker -v #查看当前安装版本

       docker version #查看版本信息

       docker info #查看系统信息

       docker images #查看当前镜像

       docker search 镜像名 #搜索镜像

       镜像、容器删除

       docker rm 容器ID

       docker rm 容器名字

       docker rmi 镜像ID

       docker rmi 镜像名

       docker rmi -f 镜像ID #强制删除

       创建网络及数据卷

       docker volume create +数据卷名称

       docker volume list #查看当前数据卷信息

       docker network create -d bridge +网络名称

       docker network ls #查看当前网络

       docker inspect containername +id #查看容器的hash值

       启动、关闭容器

       docker stop $(docker ps -a | awk '{ print $1}' | tail -n +2) #关闭所有容器

       docker start $(docker ps -a | awk '{ print $1}' | tail -n +2) #开启所有容器

       杂

       docker inspect 容器ID (使用该命令重点关注容器ip) #查看容器/镜像元数据

       docker exec #在运行的容器中执行命令

       docker exec -it 容器ID /bin/bash #以交互模式开启伪终端

FasterTransformer Decoding 源码分析(三)-LayerNorm介绍

       本文深入探讨FasterTransformer中LayerNormalization(层归一化)的源码实现与优化。作为深度学习中的关键技术,层归一化可确保网络中各层具有相似的分布,从而加速训练过程并改善模型性能。背景介绍部分详细解释了层归一化的工作原理,强调其在神经网络中的高效并行特性与广泛应用。文章从代码起点开始剖析,具体路径位于解码过程的核心部分。调用入口展示了传入参数,包括数据描述和关键参数gamma、beta、eps,简洁直观,符合公式定义。深入源码的解析揭示了优化点,特别是针对特定数据类型和维度,使用了定制化内核。此设计针对高效处理半精度数据样本,减少判断指令,实现加速运算,且对偶数维度数据进行调整以最大化Warp特性利用。接下来,内核实现的详细描述,强调了通过共享内存与block、warp级归约实现公式计算的高效性。这部分以清晰的代码结构和可视化说明,解释了块级别与Warp级归约在单个块处理多个数据点时的协同作用,以及如何通过巧妙编程优化数据处理效率。文章总结了FasterTransformer中LayerNormalization的整体优化策略,强调了在CUDA开发中基础技巧的应用,并指出与其他优化方案的比较。此外,文章还推荐了OneFlow的性能优化实践,为读者提供了一个深入探索与对比学习的资源。

Python 提速大杀器之 numba 篇

       在探讨提高Python性能的策略时,我们往往面临一个困境:Python的易用性与执行效率之间的平衡。一方面,Python以其简洁的语法和丰富的库支持而受到欢迎;另一方面,它在执行速度上相对较低,尤其是当涉及到大量循环和复杂计算时。对于开发者而言,寻找既能提升性能又不失Python简洁性的解决方案成为了一大挑战。在这个背景下,Numba应运而生,它为Python提供了一种加速代码执行的途径,特别是对于密集型的循环操作。

       首先,我们需要理解Python为何在执行效率上不如C++。Python是一种解释性语言,它的执行过程分为词法分析、语法分析、生成字节码以及将字节码解释为机器码执行四个阶段。这种解释执行的方式虽然带来了解析速度快、易于调试的优点,但也意味着每次运行时都需要将源代码转化为字节码,从而消耗额外的时间。相比之下,编译性语言如C++在编译阶段将源代码转换为机器码,减少了运行时的解释开销,因此执行速度更快。

       然而,Python的动态特性在一定程度上弥补了执行效率的不足。它不需要显式声明变量类型,这种灵活性带来了代码的简洁性,同时也减少了编译时的类型检查开销。尽管如此,对于需要高性能计算的任务,Python的解释执行过程仍然是一个瓶颈。

       正是在这样的背景下,Numba横空出世。Numba通过将Python代码编译为可直接在机器上执行的机器码,实现了对Python代码的加速。它采用了一种称为“即时编译(Just-in-time compilation, JIT)”的技术,即在代码执行时动态地将部分Python函数编译为机器码,从而实现加速效果。这种技术的引入,使得Numba能够在保持Python代码的可读性和易用性的同时,显著提升代码的执行速度。

       使用Numba加速Python代码的步骤相对简单。一个典型场景是矩阵相加问题,通过使用Numba的装饰器`@jit`,我们可以将普通的Python循环加速至接近C++水平的执行效率。例如,原本的Python代码可能需要几十毫秒来完成矩阵相加操作,而通过Numba加速后,同样的操作可以在微秒级别完成,性能提升几个数量级。

       在实际应用中,Numba的使用并不局限于简单的循环加速。对于包含大量循环的密集计算任务,Numba都能提供显著的性能提升。同时,Numba还支持与NumPy库的集成,能够加速NumPy数组的计算。在某些情况下,Numba甚至能够直接编译Python代码到CUDA GPU上运行,进一步提升计算性能,尤其适用于需要在GPU上进行大规模数据处理的场景。

       然而,Numba的加速效果并非适用于所有情况。在某些特定场景下,使用Numba可能会引入额外的编译开销,导致性能下降。因此,在使用Numba时,开发者需要根据具体场景进行性能测试,以确保代码在加速后确实能够提升性能。

       总的来说,Numba作为Python性能提升的利器,通过即时编译技术,实现了对Python代码的加速,为开发者提供了一种既保留Python语言优势又提升执行效率的途径。无论是针对循环密集型任务还是与NumPy集成加速,Numba都能提供显著的性能提升,成为Python开发者在追求高效计算时的重要工具。