欢迎来到皮皮网网首页

【矿山gis 源码】【影院源码卡密】【python在线源码】查看redis源码_redis源代码分析

来源:尾盘涨停指标源码 时间:2024-11-23 16:51:38

1.Redis7.0源码阅读:哈希表扩容、源源代缩容以及rehash
2.Redis 码r码分哨兵模式 - 源码梳理
3.Redis radix tree 源码解析
4.Redis源码阅读(1)——zmalloc
5.Redis源码解析:一条Redis命令是如何执行的?
6.分析SpringBoot 的Redis源码

查看redis源码_redis源代码分析

Redis7.0源码阅读:哈希表扩容、缩容以及rehash

       当哈希值相同发生冲突时,源源代Redis 码r码分使用链表法解决,将冲突的源源代键值对通过链表连接,但随着数据量增加,码r码分矿山gis 源码冲突加剧,源源代查找效率降低。码r码分负载因子衡量冲突程度,源源代负载因子越大,码r码分冲突越严重。源源代为优化性能,码r码分Redis 源源代需适时扩容,将新增键值对放入新哈希桶,码r码分减少冲突。源源代

       扩容发生在 setCommand 部分,其中 dictKeyIndex 获取键值对索引,判断是否需要扩容。_dictExpandIfNeeded 函数执行扩容逻辑,条件包括:不在 rehash 过程中,哈希表初始大小为0时需扩容,或负载因子大于1且允许扩容或负载因子超过阈值。

       扩容大小依据当前键值对数量计算,如哈希表长度为4,实际有9个键值对,扩容至(最小的2的n次幂大于9)。子进程存在时,dict_can_resize 为0,反之为1。fork 子进程用于写时复制,确保持久化操作的稳定性。

       哈希表缩容由 tryResizeHashTables 判断负载因子是否小于0.1,条件满足则重新调整大小。此操作在数据库定时检查,且无子进程时执行。

       rehash 是为解决链式哈希效率问题,通过增加哈希桶数量分散存储,减少冲突。影院源码卡密dictRehash 函数完成这一任务,移动键值对至新哈希表,使用位运算优化哈希计算。渐进式 rehash 通过分步操作,减少响应时间,适应不同负载情况。定时任务检测服务器空闲时,进行大步挪动哈希桶。

       在 rehash 过程中,数据查询首先在原始哈希表进行,若未找到,则在新哈希表中查找。rehash 完成后,哈希表结构调整,原始表指向新表,新表内容返回原始表,实现 rehash 结果的整合。

       综上所述,Redis 通过哈希表的扩容、缩容以及 rehash 动态调整哈希桶大小,优化查找效率,确保数据存储与检索的高效性。这不仅提高了 Redis 的性能,也为复杂数据存储与管理提供了有力支持。

Redis 哨兵模式 - 源码梳理

       本文以Redis 7.0.版本为基准,如有不妥之处,敬请指正。

       哨兵模式的代码流程逻辑如下:哨兵节点每秒(主从切换时为1秒)向已知的主节点和从节点发送info命令。接收到主节点的info回复后,解析其中的slave字段信息,进而创建相应的从节点instance。收到从节点的info回复后,解析其中的slave_master_host、slave_master_port、slave_master_link_status、slave_priority、slave_repl_offset、python在线源码replica_announced等信息(步骤2和sentinelInfoReplyCallback)。

       在sentinel.masters的初始数据中,来自于sentinel.conf中的monitor,利用info命令探测主节点及其所属的从节点。通过订阅__sentinel__:hello频道,获取其他哨兵节点的信息。其中,link->act_ping_time表示最早一次未收到回复的ping请求发送时间,收到回复后其会被重置为0。因此,其不为0时,表示有未收到回复的ping请求。link->last_avail_time表示最近一次收到对ping有效回复的时间,link->last_pong_time表示最近一次收到对ping回复(有效和无效)的时间,link->pc_last_activity表示最近一次收到publish的消息,ri->role_reported_time表示最近一次收到info且回复中role相比于上次发生改变的时间。

       Raft一致性算法

       thesecretlivesofdata.com...

Redis radix tree 源码解析

       Redis 实现了不定长压缩前缀的 radix tree,用于集群模式下存储 slot 对应的所有 key 信息。本文解析在 Redis 中实现 radix tree 的核心内容。

       核心数据结构的定义如下:

       每个节点结构体 (raxNode) 包含了指向子节点的指针、当前节点的 key 的长度、以及是否为叶子节点的标记。

       以下是插入流程示例:

       场景一:仅插入 "abcd"。此节点为叶子节点,使用压缩前缀。

       场景二:在 "abcd" 之后插入 "abcdef"。从 "abcd" 的父节点遍历至压缩前缀,找到 "abcd" 空子节点,插入 "ef" 并标记为叶子节点。

       场景三:在 "abcd" 之后插入 "ab"。ab 为 "abcd" 的前缀,插入 "ab" 为子节点,并标记为叶子节点。同时保留 "abcd" 的前缀结构。

       场景四:在 "abcd" 之后插入 "abABC"。ab 为前缀,创建 "ab" 和 "ABC" 分别为子节点,燕窝国内溯源码保持压缩前缀结构。

       删除流程则相对简单,找到指定 key 的叶子节点后,向上遍历并删除非叶子节点。若删除后父节点非压缩且大小大于1,则需处理合并问题,以优化树的高度。

       合并的条件涉及:删除节点后,检查父节点是否仍为非压缩节点且包含多个子节点,以此决定是否进行合并操作。

       结束语:云数据库 Redis 版提供了稳定可靠、性能卓越、可弹性伸缩的数据库服务,基于飞天分布式系统和全SSD盘高性能存储,支持主备版和集群版高可用架构。提供全面的容灾切换、故障迁移、在线扩容、性能优化的数据库解决方案,欢迎使用。

Redis源码阅读(1)——zmalloc

       zmalloc是一个简化内存分配的库,包含以下API函数:

       zmalloc

       zcalloc

       zrealloc

       zfree

       zstrdup

       zmalloc_used_memory

       zmalloc_set_oom_handler

       zmalloc_get_rss

       zmalloc_get_allocator_info

       zmalloc_get_private_dirty

       zmalloc_get_smap_bytes_by_field

       zmalloc_get_memory_size

       zlibc_free

       其中,zmalloc用于分配内存,zcalloc在分配内存的同时初始化为0,zrealloc用于重新分配内存,zfree用于释放内存,zstrdup用于复制字符串并分配内存,zmalloc_used_memory用于获取已分配内存的大小,zmalloc_set_oom_handler用于设置内存溢出处理器,zmalloc_get_rss用于获取当前进程的内存使用量,zmalloc_get_allocator_info用于获取分配器信息,zmalloc_get_private_dirty用于获取私有脏数据,zmalloc_get_smap_bytes_by_field用于获取指定字段的内存使用量,zmalloc_get_memory_size用于获取内存大小,zlibc_free用于释放内存。

       在zmalloc中,宏函数update_zmalloc_stat_alloc用于更新used_memory的android源码集成gms值。这个宏函数中的if语句用于补齐分配的内存字节数到sizeof(long),但是我不太理解5.0源码中为什么atomicIncr使用的是__n而不是直接对_n进行操作。测试发现,used_memory的值并未对齐到8,那么if语句的存在意义何在呢?

       同样地,update_zmalloc_stat_free宏函数用于更新已释放内存的统计信息。与update_zmalloc_stat_alloc相比,虽然malloc_usable_size已经返回精确的字节数,但update_zmalloc_stat_alloc为何不直接使用atomicIncr更新used_memory呢?在Unstable分支中,已有开发者对此进行了优化。

Redis源码解析:一条Redis命令是如何执行的?

       作者:robinhzhang

       Redis,一个开源内存数据库,凭借其高效能和广泛应用,如缓存、消息队列和会话存储,本文将带你探索其命令执行的底层流程。本文将以源码解析的形式,逐层深入Redis的核心结构和命令执行过程,旨在帮助开发者理解实现细节,提升编程技术和设计意识。

       源码结构概览

       在学习Redis源代码之前,首先要了解其主要的组成部分:redisServer、redisClient、redisDb、redisObject以及aeEventLoop。这些结构体和事件模型构成了Redis的核心架构。

       redisServer:服务端运行的核心结构,包括监听socket、数据存储的redisDb列表和客户端连接信息。

       redisClient:客户端连接状态的存储,包括命令处理缓冲区、回复数据列表和数据库句柄。

       redisDb:键值对的数据存储,采用两个哈希表实现渐进式rehash。

       redisObject:存储对象的通用表示,包含引用计数和LRU时间,用于内存管理。

       aeEventLoop:事件循环,管理文件和时间事件的处理。

       核心流程详解

       Redis的执行流程从main函数开始,首先初始化配置和服务器组件,进入主循环处理事件。命令执行流程涉及redis启动、客户端连接、接收命令和返回结果四个步骤:

       启动阶段:创建socket服务器,注册可读事件,进入主循环。

       连接阶段:客户端连接后,接收并处理命令,创建客户端实例。

       命令阶段:客户端发送命令,服务端解析并调用对应的命令处理函数。

       结果阶段:处理命令后,根据协议格式构建回复并写回客户端。

       渐进式rehash与内存管理

       Redis的内存管理采用引用计数法,通过对象的refcount字段控制内存分配和释放。rehash操作在Redis 2.x版本引入,通过逐步迁移键值对,降低对单线程性能的影响。当负载达到阈值,会进行扩容,这涉及新表的创建和键值对的迁移。

       总结

       本文通过Redis源码分析,揭示了其命令执行的细节,包括启动流程、客户端连接、命令处理和结果返回,以及内存管理策略。这将有助于开发者深入理解Redis的工作原理,提升编程效率和设计决策能力。

分析SpringBoot 的Redis源码

       在Spring Boot 2.X版本中,官方简化了项目配置,如无需编写繁琐的web.xml和相关XML文件,只需在pom.xml中引入如spring-boot-starter-data-redis的starter包即可完成大部分工作,这极大地提高了开发效率。

       深入理解其原理,我们研究了spring-boot-autoconfigure和spring-boot-starter-data-redis的源码。首先,配置项在application.properties中的设置会被自动映射到名为RedisProperties的类中,此类由RedisAutoConfiguration类负责扫描和配置。该类会检测是否存在RedisOperations接口的实现,例如官方支持的Jedis或Lettuce,以此来决定使用哪个客户端。

       在RedisAutoConfiguration中,通过@Bean注解,它引入了LettuceConnectionConfiguration和JedisConnectionConfiguration,这两个配置类会创建RedisConnectionFactory实例。在注入RedisTemplate时,实际使用的会是第一个被扫描到的RedisConnectionFactory,这里通常是LettuceConnectionFactory,因为它们在@Import注解的导入顺序中位于前面。

       自定义starter时,可以模仿官方starter的结构,首先引入spring-boot-autoconfigure,然后创建自己的配置类(如MyRedisProperties)和操作模板类(如JedisTemplete)。在MyRedisAutoConfiguration中,你需要编写相关配置并确保在spring.factories文件中注册,以便Spring Boot在启动时扫描到你的自定义配置。

       以自定义my-redis-starter为例,项目结构包括引入的依赖,配置类的属性绑定,以及创建连接池和操作方法的实现。测试时,只需在Spring Boot项目中引入自定义starter,配置好相关参数,即可验证自定义starter的正确工作。

Redis 源码剖析 3 -- redisCommand

       Redis 使用 redisCommand 结构体处理命令请求,其内包含一个指向对应处理函数的 proc 指针。redisCommandTable 是一个存储所有 Redis 命令的数组,位于 server.c 文件中。此数组通过 populateCommandTable() 函数填充,该函数将 redisCommandTable 的内容添加到 server.commands 字典,将 Redis 支持的所有命令及其实现整合。

       populateCommandTable() 函数中包含 populateCommandTableParseFlags() 子函数,用于将 sflags 字符串转换为对应的 flags 值。lookupCommand*() 函数族负责从 server.commands 中查找相应的命令。

redis源码阅读--跳表解析

       跳表是 Redis 中实现 zset 和 set 功能的关键数据结构。通过在链表基础上构建多级索引,跳表有效提升了查找效率,且其实现相较于红黑树更为简洁,无需大量精力来维持树的平衡。跳表节点具有顺序排列的特性,支持范围查询。

       跳表的构成包括头结点、尾节点、长度以及索引层数。每一个节点包含数据 robj、分数 score 用于排序、上一节点指针 prev 用于反向遍历,以及多层索引信息 levels。各层索引 skiplistlevel 包括该层索引中节点指向的下一个节点指针 next 和间隔 span。节点的索引层数通过随机数生成,设计思路为使用第 n 级索引是使用第 n-1 级索引概率的 1/4,最多使用 级索引。使用如此设计可确保即便用到最高层级,所持数据量也足够大,无需担心索引不足。

       跳表按照 score 和 robj 的大小进行排序,因此节点有序,支持范围查找。插入节点时,首先找到新节点可以插入的位置,即比新节点小的最大节点。此过程从最高层索引开始,使用 update 数组记录各层索引中节点的前一节点位置,以及 rank 数组记录 update 节点到 header 的间隔 span。新节点插入后,更新 prev 指针、tail 指针、跳表长度等信息。

       删除节点同样遵循类似的逻辑,先查找节点的前一个节点,然后删除目标节点。在删除过程中,需要检查节点的下一节点是否为待删除数据,并调整节点连接和更新跳表的 level 值。当某层索引中节点的 next 指针变为 nil 时,该层索引已无用,可将 level 减一。最后,更新跳表长度。

       虽然跳表概念看似复杂,但通过理解其多级索引机制,其余操作如范围查询、排名查询等将变得相对简单。在实际应用中,可通过阅读 Redis 源码中的 t_zset.c 和 redis.h 文件,了解跳表的具体实现。然而,更难的是将这些抽象概念转化为清晰、易于理解的文档,绘制图表对于深入理解跳表的逻辑非常有帮助。

redis是如何加载配置文件的!!源码阅读,详细介绍

       Redis的启动流程中,配置文件起着关键作用。通过命令行中的redis-server,我们可以配置服务器的监听地址、端口、访问密码等。配置文件是一个文本文件,包含选项和参数,如bind(服务器IP)、prot(端口号)和requirepass(密码)等。

       启动redis-server前,需要确保安装并配置好配置文件。配置文件的加载由loadServerConfig()函数负责,这个函数位于src/config.c,主要任务是读取配置文件内容,检查语法,将选项和参数解析并保存在内存中。启动时,通过读取命令行参数指定配置文件路径,如通过-p设置端口,-a设置密码。

       在配置文件中,包括指令用于引用其他配置文件,如`include`。如果遇到include,Redis会调用glob()函数扩展匹配规则,将相关配置文件合并到主配置中。`loadServerConfig`函数会处理各种选项,如从标准输入读取配置(config_from_stdin)和直接从命令行参数传递的选项(options)。

       解析配置文件时,loadServerConfigFromString函数将字符串形式的配置逐行处理,如跳过注释行,分割参数,然后根据配置项类型和数量执行相应的设置操作。如果遇到如`rename-command`、`user`声明或`loadmodule`等特殊指令,会有对应的处理逻辑。

       总的来说,Redis的配置文件加载过程严谨且灵活,它确保了服务器能在接收到正确配置后启动,提供了丰富的配置选项来满足不同场景的需求。若想深入了解,后续会有更多关于配置文件细节的探讨。