1.HashMap为ä»ä¹ä¸å®å
¨ï¼
2.结合源码探究HashMap初始化容量问题
3.ConcurrentHashMap确实很复杂,源码这样学源码才简单
4.idea debug进入HashMap源码时传参不正确?
5.HashMap实现原理一步一步分析(1-put方法源码整体过程)
6.concurrenthashmap1.8源码如何详细解析?源码
HashMap为ä»ä¹ä¸å®å ¨ï¼
æ们é½ç¥éHashMapæ¯çº¿ç¨ä¸å®å ¨çï¼å¨å¤çº¿ç¨ç¯å¢ä¸ä¸å»ºè®®ä½¿ç¨ï¼ä½æ¯å ¶çº¿ç¨ä¸å®å ¨ä¸»è¦ä½ç°å¨ä»ä¹å°æ¹å¢ï¼æ¬æå°å¯¹è¯¥é®é¢è¿è¡è§£å¯ã1.jdk1.7ä¸çHashMap
å¨jdk1.8ä¸å¯¹HashMapåäºå¾å¤ä¼åï¼è¿éå åæå¨jdk1.7ä¸çé®é¢ï¼ç¸ä¿¡å¤§å®¶é½ç¥éå¨jdk1.7å¤çº¿ç¨ç¯å¢ä¸HashMap容æåºç°æ»å¾ªç¯ï¼è¿éæ们å ç¨ä»£ç æ¥æ¨¡æåºç°æ»å¾ªç¯çæ åµï¼
public class HashMapTest { public static void main(String[] args) { HashMapThread thread0 = new HashMapThread(); HashMapThread thread1 = new HashMapThread(); HashMapThread thread2 = new HashMapThread(); HashMapThread thread3 = new HashMapThread(); HashMapThread thread4 = new HashMapThread(); thread0.start(); thread1.start(); thread2.start(); thread3.start(); thread4.start(); }}class HashMapThread extends Thread { private static AtomicInteger ai = new AtomicInteger(); private static Map map = new HashMap<>(); @Override public void run() { while (ai.get() < ) { map.put(ai.get(), ai.get()); ai.incrementAndGet(); } }}
ä¸è¿°ä»£ç æ¯è¾ç®åï¼å°±æ¯å¼å¤ä¸ªçº¿ç¨ä¸æè¿è¡putæä½ï¼å¹¶ä¸HashMapä¸AtomicIntegeré½æ¯å ¨å±å ±äº«çã
å¨å¤è¿è¡å 次该代ç åï¼åºç°å¦ä¸æ»å¾ªç¯æ å½¢ï¼
å ¶ä¸æå 次è¿ä¼åºç°æ°ç»è¶ççæ åµï¼
è¿éæ们çéåæ为ä»ä¹ä¼åºç°æ»å¾ªç¯çæ åµï¼éè¿jpsåjstackå½åæ¥çæ»å¾ªç¯æ åµï¼ç»æå¦ä¸ï¼
ä»å æ ä¿¡æ¯ä¸å¯ä»¥çå°åºç°æ»å¾ªç¯çä½ç½®ï¼éè¿è¯¥ä¿¡æ¯å¯æç¡®ç¥éæ»å¾ªç¯åçå¨HashMapçæ©å®¹å½æ°ä¸ï¼æ ¹æºå¨transferå½æ°ä¸ï¼jdk1.7ä¸HashMapçtransferå½æ°å¦ä¸ï¼
void transfer(Entry[] newTable, boolean rehash) { int newCapacity = newTable.length; for (Entry e : table) { while(null != e) { Entry next = e.next; if (rehash) { e.hash = null == e.key ? 0 : hash(e.key); } int i = indexFor(e.hash, newCapacity); e.next = newTable[i]; newTable[i] = e; e = next; } } }
æ»ç»ä¸è¯¥å½æ°ç主è¦ä½ç¨ï¼
å¨å¯¹tableè¿è¡æ©å®¹å°newTableåï¼éè¦å°åæ¥æ°æ®è½¬ç§»å°newTableä¸ï¼æ³¨æ-è¡ä»£ç ï¼è¿éå¯ä»¥çåºå¨è½¬ç§»å ç´ çè¿ç¨ä¸ï¼ä½¿ç¨çæ¯å¤´ææ³ï¼ä¹å°±æ¯é¾è¡¨ç顺åºä¼ç¿»è½¬ï¼è¿éä¹æ¯å½¢ææ»å¾ªç¯çå ³é®ç¹ã
ä¸é¢è¿è¡è¯¦ç»åæã
1.1 æ©å®¹é ææ»å¾ªç¯åæè¿ç¨
åææ¡ä»¶ï¼è¿éå设ï¼
hashç®æ³ä¸ºç®åçç¨key modé¾è¡¨ç大å°ã
æå¼å§hash表size=2ï¼key=3,7,5ï¼åé½å¨table[1]ä¸ã
ç¶åè¿è¡resizeï¼ä½¿sizeåæ4ã
æªresizeåçæ°æ®ç»æå¦ä¸ï¼
请ç¹å»è¾å ¥å¾çæè¿°
å¦æå¨å线ç¨ç¯å¢ä¸ï¼æåçç»æå¦ä¸ï¼
请ç¹å»è¾å ¥å¾çæè¿°
è¿éç转移è¿ç¨ï¼ä¸åè¿è¡è¯¦è¿°ï¼åªè¦ç解transferå½æ°å¨åä»ä¹ï¼å ¶è½¬ç§»è¿ç¨ä»¥åå¦ä½å¯¹é¾è¡¨è¿è¡å转åºè¯¥ä¸é¾ã
ç¶åå¨å¤çº¿ç¨ç¯å¢ä¸ï¼å设æ两个线ç¨AåBé½å¨è¿è¡putæä½ã线ç¨Aå¨æ§è¡å°transferå½æ°ä¸ç¬¬è¡ä»£ç å¤æèµ·ï¼å 为该å½æ°å¨è¿éåæçå°ä½é常éè¦ï¼å æ¤å次贴åºæ¥ã
请ç¹å»è¾å ¥å¾çæè¿°
æ¤æ¶çº¿ç¨Aä¸è¿è¡ç»æå¦ä¸ï¼
请ç¹å»è¾å ¥å¾çæè¿°
线ç¨Aæèµ·åï¼æ¤æ¶çº¿ç¨Bæ£å¸¸æ§è¡ï¼å¹¶å®æresizeæä½ï¼ç»æå¦ä¸ï¼
请ç¹å»è¾å ¥å¾çæè¿°
è¿ééè¦ç¹å«æ³¨æçç¹ï¼ç±äºçº¿ç¨Bå·²ç»æ§è¡å®æ¯ï¼æ ¹æ®Javaå å模åï¼ç°å¨newTableåtableä¸çEntryé½æ¯ä¸»åä¸ææ°å¼ï¼7.next=3ï¼3.next=nullã
æ¤æ¶åæ¢å°çº¿ç¨Aä¸ï¼å¨çº¿ç¨Aæèµ·æ¶å åä¸å¼å¦ä¸ï¼e=3ï¼next=7ï¼newTable[3]=nullï¼ä»£ç æ§è¡è¿ç¨å¦ä¸ï¼
newTable[3]=e ----> newTable[3]=3e=next ----> e=7 æ¤æ¶ç»æå¦ä¸ï¼è¯·ç¹å»è¾å ¥å¾çæè¿°
继ç»å¾ªç¯ï¼
e=7next=e.next ----> next=3ãä»ä¸»åä¸åå¼ãe.next=newTable[3] ----> e.next=3ãä»ä¸»åä¸åå¼ãnewTable[3]=e ----> newTable[3]=7e=next ----> e=3 ç»æå¦ä¸ï¼è¯·ç¹å»è¾å ¥å¾çæè¿°
å次è¿è¡å¾ªç¯ï¼
e=3next=e.next ----> next=nulle.next=newTable[3] ----> e.next=7 å³ï¼3.next=7newTable[3]=e ----> newTable[3]=3e=next ----> e=null 注ææ¤æ¬¡å¾ªç¯ï¼e.next=7ï¼èå¨ä¸æ¬¡å¾ªç¯ä¸7.next=3ï¼åºç°ç¯å½¢é¾è¡¨ï¼å¹¶ä¸æ¤æ¶e=null循ç¯ç»æãç»æå¦ä¸ï¼
请ç¹å»è¾å ¥å¾çæè¿°
å¨åç»æä½ä¸åªè¦æ¶å轮询hashmapçæ°æ®ç»æï¼å°±ä¼å¨è¿éåçæ»å¾ªç¯ï¼é ææ²å§ã
1.2 æ©å®¹é ææ°æ®ä¸¢å¤±åæè¿ç¨
éµç §ä¸è¿°åæè¿ç¨ï¼åå§æ¶ï¼
请ç¹å»è¾å ¥å¾çæè¿°
线ç¨Aå线ç¨Bè¿è¡putæä½ï¼åæ ·çº¿ç¨Aæèµ·ï¼
请ç¹å»è¾å ¥å¾çæè¿°
æ¤æ¶çº¿ç¨Açè¿è¡ç»æå¦ä¸ï¼
请ç¹å»è¾å ¥å¾çæè¿°
æ¤æ¶çº¿ç¨Bå·²è·å¾CPUæ¶é´çï¼å¹¶å®æresizeæä½ï¼
请ç¹å»è¾å ¥å¾çæè¿°
åæ ·æ³¨æç±äºçº¿ç¨Bæ§è¡å®æï¼newTableåtableé½ä¸ºææ°å¼ï¼5.next=nullã
æ¤æ¶åæ¢å°çº¿ç¨Aï¼å¨çº¿ç¨Aæèµ·æ¶ï¼e=7ï¼next=5ï¼newTable[3]=nullã
æ§è¡newtable[i]=eï¼å°±å°7æ¾å¨äºtable[3]çä½ç½®ï¼æ¤æ¶next=5ãæ¥çè¿è¡ä¸ä¸æ¬¡å¾ªç¯ï¼
e=5next=e.next ----> next=nullï¼ä»ä¸»åä¸åå¼e.next=newTable[1] ----> e.next=5ï¼ä»ä¸»åä¸åå¼newTable[1]=e ----> newTable[1]=5e=next ----> e=null å°5æ¾ç½®å¨table[1]ä½ç½®ï¼æ¤æ¶e=null循ç¯ç»æï¼3å ç´ ä¸¢å¤±ï¼å¹¶å½¢æç¯å½¢é¾è¡¨ã并å¨åç»æä½hashmapæ¶é ææ»å¾ªç¯ã请ç¹å»è¾å ¥å¾çæè¿°
2.jdk1.8ä¸HashMap
å¨jdk1.8ä¸å¯¹HashMapè¿è¡äºä¼åï¼å¨åçhash碰æï¼ä¸åéç¨å¤´ææ³æ¹å¼ï¼èæ¯ç´æ¥æå ¥é¾è¡¨å°¾é¨ï¼å æ¤ä¸ä¼åºç°ç¯å½¢é¾è¡¨çæ åµï¼ä½æ¯å¨å¤çº¿ç¨çæ åµä¸ä»ç¶ä¸å®å ¨ï¼è¿éæ们çjdk1.8ä¸HashMapçputæä½æºç ï¼
final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) { Node[] tab; Node p; int n, i; if ((tab = table) == null || (n = tab.length) == 0) n = (tab = resize()).length; if ((p = tab[i = (n - 1) & hash]) == null) // å¦æ没æhash碰æåç´æ¥æå ¥å ç´ tab[i] = newNode(hash, key, value, null); else { Node e; K k; if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) e = p; else if (p instanceof TreeNode) e = ((TreeNode)p).putTreeVal(this, tab, hash, key, value); else { for (int binCount = 0; ; ++binCount) { if ((e = p.next) == null) { p.next = newNode(hash, key, value, null); if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st treeifyBin(tab, hash); break; } if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) break; p = e; } } if (e != null) { // existing mapping for key V oldValue = e.value; if (!onlyIfAbsent || oldValue == null) e.value = value; afterNodeAccess(e); return oldValue; } } ++modCount; if (++size > threshold) resize(); afterNodeInsertion(evict); return null; } è¿æ¯jdk1.8ä¸HashMapä¸putæä½ç主å½æ°ï¼ 注æ第6è¡ä»£ç ï¼å¦æ没æhash碰æåä¼ç´æ¥æå ¥å ç´ ãå¦æ线ç¨Aå线ç¨Båæ¶è¿è¡putæä½ï¼å好è¿ä¸¤æ¡ä¸åçæ°æ®hashå¼ä¸æ ·ï¼å¹¶ä¸è¯¥ä½ç½®æ°æ®ä¸ºnullï¼æ以è¿çº¿ç¨AãBé½ä¼è¿å ¥ç¬¬6è¡ä»£ç ä¸ã
å设ä¸ç§æ åµï¼çº¿ç¨Aè¿å ¥åè¿æªè¿è¡æ°æ®æå ¥æ¶æèµ·ï¼è线ç¨Bæ£å¸¸æ§è¡ï¼ä»èæ£å¸¸æå ¥æ°æ®ï¼ç¶å线ç¨Aè·åCPUæ¶é´çï¼æ¤æ¶çº¿ç¨Aä¸ç¨åè¿è¡hashå¤æäºï¼é®é¢åºç°ï¼çº¿ç¨Aä¼æ线ç¨Bæå ¥çæ°æ®ç»è¦çï¼åç线ç¨ä¸å®å ¨ã
æ»ç»
é¦å HashMapæ¯çº¿ç¨ä¸å®å ¨çï¼å ¶ä¸»è¦ä½ç°ï¼
å¨jdk1.7ä¸ï¼å¨å¤çº¿ç¨ç¯å¢ä¸ï¼æ©å®¹æ¶ä¼é æç¯å½¢é¾ææ°æ®ä¸¢å¤±ã
å¨jdk1.8ä¸ï¼å¨å¤çº¿ç¨ç¯å¢ä¸ï¼ä¼åçæ°æ®è¦ççæ åµã
结合源码探究HashMap初始化容量问题
探究HashMap初始化容量问题
在深入研究HashMap源码时,有一个问题引人深思:为何在知道需要存储n个键值对时,源码我们通常会选择初始化容量为capacity = n / 0. + 1?
本文旨在解答这一疑惑,源码适合具备一定HashMap基础知识的源码读者。请在阅读前,源码备份网页源码思考以下问题:
让我们通过解答这些问题,源码逐步展开对HashMap初始化容量的源码深入探讨。
源码探究
让我们从实际代码出发,源码通过debug逐步解析HashMap的源码初始化逻辑。
举例:初始化一个容量为9的源码HashMap。
执行代码后,源码我们发现初始化容量为,源码且阈值threshold设置为。源码
解析
通过debug,源码我们首先关注到构造方法中的初始化逻辑。注意到,初始化阈值时,实际调用的是`tabliSizeFor(int n)`方法,它返回第一个大于等于n的2的幂。例如,`tabliSizeFor(9)`返回,`tabliSizeFor()`返回,`tabliSizeFor(8)`返回8。
继续解析
在构造方法结束后,我们通过debug继续追踪至`put`方法,直至`putVal`方法。
在`putVal`方法中,我们发现当第一次调用`put`时,table为null,从而触发初始化逻辑。在初始化过程中,关键在于`resize()`方法中对新容量`newCap`的初始化,即等于构造方法中设置的react源码研读阈值`threshold`()。
阈值更新
在初始化后,我们进一步关注`updateNewThr`的代码逻辑,发现新的阈值被更新为新容量乘以负载因子,即 * 0.。
案例分析
举例:初始化一个容量为8的HashMap。
解答:答案是8,因为`tableSizeFor`方法返回大于等于参数的2的幂,而非严格大于。
扩容问题
举例:当初始化容量为时,放入9个不同的entry是否会引发扩容。
解答:不会,因为扩容条件与阈值有关,当map中存储的键值对数量大于阈值时才触发扩容。根据第一问,初始化容量是,阈值为 * 0. = 9,我们只放了9个,因此不会引起扩容。
容量选择
举例:已知需要存储个键值对,如何选择合适的初始化容量。
解答:初始化容量的目的是减少扩容次数以提高效率并节省空间。选择容量时,应考虑既能防止频繁扩容又能充分利用空间。具体选择取决于实际需求和预期键值对的数量。
总结
通过本文的探讨,我们深入了解了HashMap初始化容量背后的逻辑和原因。希望这些解析能够帮助您更深入地理解HashMap的内部工作原理。如果您对此有任何疑问或不同的见解,欢迎在评论区讨论。
最后,如有帮助,欢迎点赞分享。
ConcurrentHashMap确实很复杂,github网站源码这样学源码才简单
ConcurrentHashMap相较于HashMap在实现上更为复杂,主要涉及多线程环境下的并发安全、同步和锁的概念。虽然HashMap的原理主要围绕数组、链表、哈希碰撞和扩容,但在多线程场景下,这些知识还不够,需要对并发和同步有深入理解。
在实际编程中,HashMap经常被使用,而ConcurrentHashMap的使用频率却相对较低,这使得学习它的门槛变高。学习ConcurrentHashMap之前,关键在于理解HashMap的基本实现,特别是它在非线程安全情况下的操作,如数组初始化和putVal()方法。
HashMap的线程不安全问题主要表现在数组的懒加载和带if判断的put操作上,这可能导致数据一致性问题。为了解决这些问题,像HashTable和Collections.synchronizedMap()通过synchronized关键字加锁,但会导致性能下降。ConcurrentHashMap引入了CAS(Compare And Swap)技术,比如在initTable()方法中,通过volatile修饰的成员变量保证了数组初始化的线程安全。
ConcurrentHashMap在数组初始化、下标为空时使用CAS,而在有冲突时切换到synchronized,降低了锁的粒度,以提高效率。扩容是ConcurrentHashMap的难点,需要处理新旧数组的同步迁移问题,通过helpTransfer()方法和transfer()方法来确保线程安全。uhttpd源码下载
总结来说,学习ConcurrentHashMap不仅是对HashMap知识的扩展,更是进入并发编程世界的重要一步。面试时,如果只问基本数据结构,那可能只需要了解HashMap;但若深入到ConcurrentHashMap,就涉及到了并发编程的核心技术,如CAS、同步和锁的管理。
idea debug进入HashMap源码时传参不正确?
我测试了下面的代码:分别在这四个位置打了断点以监控程序的运行情况,debug后,进入第一次断点的位置为:
与题主说的情况一致,而没有进入我的第一个断点进行输出,而后F9:
发现还是在put文件,经多次F9之后,可以看出来,其实java的jvm在启动的时候,在底层也自行调用的put方法,将jvm所需要的一些动态库、jar包put到某个map之中,具体是哪个map看不出来。要等到jvm底层将所有东西准备好后,才进行main函数。
jvm准备需要put多少次我就不数了,现在我先把put的断点取消,让程序debug到我的第一个断点处:
这个时候将put方法打上断点,F9发现:
奇怪的key值增加了,它将我的classes编译目录丢进去了,继续F9,和上一步差不多,再再次F9,终于来了:
继续F9,终于到达了我的十三张 源码第二个断点:
继续F9,这次没有put奇怪的东西了:
继续:
最后:
然后程序退出:
综上,jvm在启动的时候会在程序背后隐式地将一些配置啊什么的通过put方法放到某些地方,不用关心,你遇到的情况是正常的也是正确的
HashMap实现原理一步一步分析(1-put方法源码整体过程)
本文分享了HashMap内部的实现原理,重点解析了哈希(hash)、散列表(hash table)、哈希码(hashcode)以及hashCode()方法等基本概念。
哈希(hash)是将任意长度的输入通过散列算法转换为固定长度输出的过程,建立一一对应关系。常见算法包括MD5加密和ASCII码表。
散列表(hash table)是一种数据结构,通过关键码值映射到表中特定位置进行快速访问。
哈希码(hashcode)是散列表中对象的存储位置标识,用于查找效率。
Object类中的hashCode()方法用于获取对象的哈希码值,以在散列存储结构中确定对象存储地址。
在存储字母时,使用哈希码值对数组大小取模以适应存储范围,防止哈希碰撞。
HashMap在JDK1.7中使用数组+链表结构,而JDK1.8引入了红黑树以优化性能。
HashMap内部数据结构包含数组和Entry对象,数组用于存储Entry对象,Entry对象用于存储键值对。
在put方法中,首先判断数组是否为空并初始化,然后计算键的哈希码值对数组长度取模,用于定位存储位置。如果发生哈希碰撞,使用链表解决。
本文详细介绍了HashMap的存储机制,包括数组+链表的实现方式,以及如何处理哈希碰撞。后续文章将继续深入探讨HashMap的其他特性,如数组长度的优化、多线程环境下的性能优化和红黑树的引入。
concurrenthashmap1.8源码如何详细解析?
ConcurrentHashMap在JDK1.8的线程安全机制基于CAS+synchronized实现,而非早期版本的分段锁。
在JDK1.7版本中,ConcurrentHashMap采用分段锁机制,包含一个Segment数组,每个Segment继承自ReentrantLock,并包含HashEntry数组,每个HashEntry相当于链表节点,用于存储key、value。默认支持个线程并发,每个Segment独立,互不影响。
对于put流程,与普通HashMap相似,首先定位至特定的Segment,然后使用ReentrantLock进行操作,后续过程与HashMap基本相同。
get流程简单,通过hash值定位至segment,再遍历链表找到对应元素。需要注意的是,value是volatile的,因此get操作无需加锁。
在JDK1.8版本中,线程安全的关键在于优化了put流程。首先计算hash值,遍历node数组。若位置为空,则通过CAS+自旋方式初始化。
若数组位置为空,尝试使用CAS自旋写入数据;若hash值为MOVED,表示需执行扩容操作;若满足上述条件均不成立,则使用synchronized块写入数据,同时判断链表或转换为红黑树进行插入。链表操作与HashMap相同,链表长度超过8时转换为红黑树。
get查询流程与HashMap基本一致,通过key计算位置,若table对应位置的key相同则返回结果;如为红黑树结构,则按照红黑树规则获取;否则遍历链表获取数据。
我说HashMap初始容量是,面试官让我回去等通知
HashMap是工作和面试中常见的数据类型,但很多人只停留在会用的层面,对它的底层实现原理并不深入理解。让我们一起深入浅出地解析HashMap的底层实现。
考虑以下面试问题,你能完整回答几个呢?
1. HashMap的底层数据结构是什么?
JDK1.7使用数组+链表,通过下标快速查询,解决哈希冲突。JDK1.8进行了优化,引入了红黑树,查询效率提升到O(logn)。在JDK1.8中,数组+链表+红黑树结构,当链表长度达到8,并且数组长度大于时,链表会转换为红黑树。
2. HashMap的初始容量是多少?
在JDK1.7中,初始容量为,但在JDK1.8中,初始化时并未指定容量,而是在首次执行put操作时才初始化容量。初始化时仅指定了负载因子大小。
3. HashMap的put方法流程是怎样的?
源码揭示了put方法的流程,包括哈希计算、桶定位、插入或替换操作等。
4. HashMap为何要设置容量为2的倍数?
为了更高效地计算key对应的数组下标位置,当数组长度为2的倍数时,可以通过逻辑与运算快速计算下标位置,比取模运算更快。
5. HashMap为何线程不安全?
因为HashMap的所有修改方法均未加锁,导致在多线程环境下无法保证数据的一致性和安全性。例如,一个线程删除key后,其他线程可能还无法察觉,导致数据不一致;在扩容时,另一个线程可能添加元素,但由于没有加锁,元素可能丢失,影响数据安全性。
6. 解决哈希冲突的方法有哪些?
常见的方法包括链地址法、线性探测法、再哈希法等。
7. JDK1.8扩容流程有何优化?
JDK1.7在扩容时会遍历原数组,重新哈希,计算新数组下标,效率较低。而JDK1.8则优化了流程,只遍历原数组,通过新旧数组下标映射减少操作,提高了效率。
推荐阅读:《我爱背八股系列》
面试官问关于订单ID、分库分表、分布式锁、消息队列、MySQL索引、锁原理、查询性能优化等八股文问题时,幸亏有总结的全套八股文。
以上内容是关于HashMap的深入解析和面试常见问题的解答,希望能够帮助到大家。
List LinkedList HashSet HashMap底层原理剖析
ArrayList底层数据结构采用数组。数组在Java中连续存储,因此查询速度快,时间复杂度为O(1),插入数据时可能会慢,特别是需要移动位置时,时间复杂度为O(N),但末尾插入时时间复杂度为O(1)。数组需要固定长度,ArrayList默认长度为,最大长度为Integer.MAX_VALUE。在添加元素时,如果数组长度不足,则会进行扩容。JDK采用复制扩容法,通过增加数组容量来提升性能。若数组较大且知道所需存储数据量,可设置数组长度,或者指定最小长度。例如,设置最小长度时,扩容长度变为原有容量的1.5倍,从增加到。
LinkedList底层采用双向列表结构。链表存储为物理独立存储,因此插入操作的时间复杂度为O(1),且无需扩容,也不涉及位置挪移。然而,查询操作的时间复杂度为O(N)。LinkedList的add和remove方法中,add默认添加到列表末尾,无需移动元素,相对更高效。而remove方法默认移除第一个元素,移除指定元素时则需要遍历查找,但与ArrayList相比,无需执行位置挪移。
HashSet底层基于HashMap。HashMap在Java 1.7版本之前采用数组和链表结构,自1.8版本起,则采用数组、链表与红黑树的组合结构。在Java 1.7之前,链表使用头插法,但在高并发环境下可能会导致链表死循环。从Java 1.8开始,链表采用尾插法。在创建HashSet时,通常会设置一个默认的负载因子(默认值为0.),当数组的使用率达到总长度的%时,会进行数组扩容。HashMap的put方法和get方法的源码流程及详细逻辑可能较为复杂,涉及哈希算法、负载因子、扩容机制等核心概念。