1.golang map 源码解读(8问)
2.concurrenthashmap1.8源码如何详细解析?码对
3.浅谈Golang两种线程安全的map
4.MapReduce源码解析之InputFormat
5.map在golang的底层实现和源码分析
6.js中的Map、Set
golang map 源码解读(8问)
map底层数据结构为hmap,码对包含以下几个关键部分:
1. buckets - 指向桶数组的码对指针,存储键值对。码对
2. count - 记录key的码对数量。
3. B - 桶的码对曙光指标源码数量的对数值,用于计算增量扩容。码对
4. noverflow - 溢出桶的码对数量,用于等量扩容。码对
5. hash0 - hash随机值,码对增加hash值的码对随机性,减少碰撞。码对
6. oldbuckets - 扩容过程中的码对旧桶指针,判断桶是码对否在扩容中。
7. nevacuate - 扩容进度值,码对小于此值的已经完成扩容。
8. flags - 标记位,用于迭代或写操作时检测并发场景。
每个桶数据结构bmap包含8个key和8个value,以及8个tophash值,用于第一次比对。
overflow指向下一个桶,桶与桶形成链表存储key-value。
结构示意图在此。
map的初始化分为3种,具体调用的函数根据map的初始长度确定:
1. makemap_small - 当长度不大于8时,只创建hmap,不初始化buckets。
2. makemap - 当长度参数为int时,底层调用makemap。
3. makemap - 初始化hash0,计算对数B,并初始化buckets。java入门 源码
map查询底层调用mapaccess1或mapaccess2,前者无key是否存在的bool值,后者有。
查询过程:计算key的hash值,与低B位取&确定桶位置,获取tophash值,比对tophash,相同则比对key,获得value,否则继续寻找,直至返回0值。
map新增调用mapassign,步骤包括计算hash值,确定桶位置,比对tophash和key值,插入元素。
map的扩容有两种情况:当count/B大于6.5时进行增量扩容,容量翻倍,渐进式完成,每次最多2个bucket;当count/B小于6.5且noverflow大于时进行等量扩容,容量不变,但分配新bucket数组。
map删除元素通过mapdelete实现,查找key,计算hash,找到桶,遍历元素比对tophash和key,找到后置key,value为nil,修改tophash为1。
map遍历是无序的,依赖mapiterinit和mapiternext,选择一个bucket和offset进行随机遍历。xmpp android源码
在迭代过程中,可以通过修改元素的key,value为nil,设置tophash为1来删除元素,不会影响遍历的顺序。
concurrenthashmap1.8源码如何详细解析?
ConcurrentHashMap在JDK1.8的线程安全机制基于CAS+synchronized实现,而非早期版本的分段锁。
在JDK1.7版本中,ConcurrentHashMap采用分段锁机制,包含一个Segment数组,每个Segment继承自ReentrantLock,并包含HashEntry数组,每个HashEntry相当于链表节点,用于存储key、value。默认支持个线程并发,每个Segment独立,互不影响。
对于put流程,与普通HashMap相似,首先定位至特定的Segment,然后使用ReentrantLock进行操作,后续过程与HashMap基本相同。
get流程简单,通过hash值定位至segment,再遍历链表找到对应元素。需要注意的是,value是volatile的,因此get操作无需加锁。
在JDK1.8版本中,线程安全的关键在于优化了put流程。首先计算hash值,遍历node数组。docker源码 编译若位置为空,则通过CAS+自旋方式初始化。
若数组位置为空,尝试使用CAS自旋写入数据;若hash值为MOVED,表示需执行扩容操作;若满足上述条件均不成立,则使用synchronized块写入数据,同时判断链表或转换为红黑树进行插入。链表操作与HashMap相同,链表长度超过8时转换为红黑树。
get查询流程与HashMap基本一致,通过key计算位置,若table对应位置的key相同则返回结果;如为红黑树结构,则按照红黑树规则获取;否则遍历链表获取数据。
浅谈Golang两种线程安全的map
文章标题:浅谈Golang两种线程安全的map
导语:本文将深入探讨Golang中的本地缓存库选择与对比,帮助您解决困惑。
Golang map并发读写测试:
在Golang中,原生的map在并发场景下的读写操作是线程不安全的,无论key是否相同。具体来说,当并发读写map的不同key时,运行结果会出现并发错误,因为map在读取时会检查hashWriting标志。如果存在该标志,即表示正在写入,此时会报错。在写入时,会设置该标志:h.flags |= hashWriting。设置完成后,系统会取消该标记。
使用-race编译选项可以检测并发问题,这是通过Golang的源码分析、文章解析和官方博客中详细解释的手机源码架设。
map+读写锁实现:
在官方sync.map库推出之前,推荐使用map与读写锁(RWLock)的组合。通过定义一个匿名结构体变量,包含map、RWLock,可以实现读写操作。
具体操作方法如下:从counter中读取数据,往counter中写入数据。然而,sync.map和这种实现方式有何不同?它在性能优化方面做了哪些改进?
sync.map实现:
sync.map使用读写分离策略,通过空间换取时间,优化了并发性能。相较于map+RWLock的实现,它在某些特定场景中减少锁竞争的可能性,因为可以无锁访问read map,并优先操作read map。如果仅操作read map即可满足需求(如增删改查和遍历),则无需操作write map,后者在读写时需要加锁。
sync.map的源码深入分析:
接下来,我们将着重探讨sync.Map的源码,以理解其运作原理,包括结构体Map、readOnly、entry等。
sync.Map方法介绍:
sync.Map提供了四个关键方法:Store、Load、Delete、Range。具体功能如下:
Load方法:解释Map.dirty如何提升为Map.read的机制。
Store方法:介绍tryStore函数、unexpungeLocked函数和dirtyLocked函数的实现。
Delete方法:简单总结。
Range方法:简单总结。
sync.Map总结:
sync.Map更适用于读取频率远高于更新频率的场景(appendOnly模式,尤其是key存一次,多次读取且不删除的情况),因为在key存在的情况下,读写删操作可以无锁直接访问readOnly。不建议用于频繁插入与读取新值的场景,因为这会导致dirty频繁操作,需要频繁加锁和更新read。此时,github开源库orcaman/concurrent-map可能更为合适。
设计点:expunged:
expunged是entry.p值的三种状态之一。当使用Store方法插入新key时,会加锁访问dirty,并将readOnly中未被标记为删除的所有entry指针复制到dirty。此时,之前被Delete方法标记为软删除的entry(entry.p被置为nil)都会变为expunged状态。
sync.map其他问题:
sync.map为何不实现len方法?这可能涉及成本与收益的权衡。
orcaman/concurrent-map的适用场景与实现:
orcaman/concurrent-map适用于反复插入与读取新值的场景。其实现思路是对Golang原生map进行分片加锁,降低锁粒度,从而达到最少的锁等待时间(锁冲突)。
它实现简单,部分源码如下,包括数据结构和函数介绍。
后续:
在其他业务场景中,可能需要本地kv缓存组件库,支持键过期时间设置、淘汰策略、存储优化、GC优化等功能。此时,可能需要了解freecache、gocache、fastcache、bigcache、groupcache等组件库。
参考链接:
链接1:/questions//golang-fatal-error-concurrent-map-read-and-map-write/
链接2:/golang/go/issues/
链接3:/golang/go/blob/master/src/sync/map.go
链接4:/orcaman/concurrent-map
MapReduce源码解析之InputFormat
导读
深入探讨MapReduce框架的核心组件——InputFormat。此组件在处理多样化数据类型时,扮演着数据格式化和分片的角色。通过设置job.setInputFormatClass(TextInputFormat.class)等操作,程序能正确处理不同文件类型。InputFormat类作为抽象基础,定义了文件切分逻辑和RecordReader接口,用于读取分片数据。本节将解析InputFormat、InputSplit、RecordReader的结构与实现,以及如何在Map任务中应用此框架。
类图与源码解析
InputFormat类提供了两个关键抽象方法:getSplits()和createRecordReader()。getSplits()负责规划文件切分策略,定义逻辑上的分片,而RecordReader则从这些分片中读取数据。
InputSplit类承载了切分逻辑,表示了给定Mapper处理的逻辑数据块,包含所有K-V对的集合。
RecordReader类实现了数据读取流程,其子类如LineRecordReader,提供行数据读取功能,将输入流中的数据按行拆分,赋值为Key和Value。
具体实现与操作流程
在getSplits()方法中,FileInputFormat类负责将输入文件按照指定策略切分成多个InputSplit。
TextInputFormat类的createRecordReader()方法创建了LineRecordReader实例,用于读取文件中的每一行数据,形成K-V对。
Mapper任务执行时,通过调用RecordReader的nextKeyValue()方法,读取文件的每一行,完成数据处理。
在Map任务的run()方法中,MapContextImp类实例化了一个RecordReader,用于实现数据的迭代和处理。
总结
本文详细阐述了MapReduce框架中InputFormat的实现原理及其相关组件,包括类图、源码解析、具体实现与操作流程。后续文章将继续探讨MapReduce框架的其他关键组件源码解析,为开发者提供深入理解MapReduce的构建和优化方法。
map在golang的底层实现和源码分析
在Golang 1..2版本中,map的底层实现由两个核心结构体——hmap和bmap(此处用桶来描述)——构建。初始化map,如`make(map[k]v, hint)`,会创建一个hmap实例,包含map的所有信息。makemap函数负责创建hmap、计算B值和初始化桶数组。
Golang map的高效得益于其巧妙的设计:首先,key的hash值的后B位作为桶索引;其次,key的hash值的前8位决定桶内结构体的数组索引,包括tophash、key和value;tophash数组还用于存储标志位,当桶内元素为空时,标志位能快速识别。读写删除操作充分利用了这些设计,包括更新、新增和删除key-value对。
删除操作涉及到定位key,移除地址空间,更新桶内tophash的标志位。而写操作,虽然mapassign函数返回value地址但不直接写值,实际由编译器生成的汇编指令提高效率。扩容和迁移机制如sameSizeGrow和biggerSizeGrow,针对桶利用率低或桶数组满的情况,通过调整桶结构和数组长度,优化查找效率。
evacuate函数负责迁移数据到新的桶区域,并清理旧空间。最后,虽然本文未详述,但订阅"后端云"公众号可获取更多关于Golang map底层实现的深入内容。
js中的Map、Set
在Vue3的源码中,Map和WeakMap这两种ES6新增的内置数据结构起着至关重要的作用,它们在响应式系统中提供了高效且内存管理友好的解决方案。
Map:
Map是一种键值对的可迭代容器,区别于对象,它需要通过new创建实例。Map的创建依赖于可迭代的参数,并在迭代过程中,新添加或删除的键值对会被访问。与对象不同,Map的迭代特性确保了数据的完整性和一致性。
Set:
Set则是无重复值的集合,与Array类似,通过new创建实例。Set的迭代行为与Map相似,但只处理value,且值的引用是弱的,有利于内存管理。在Vue3中,Set常用于存储唯一值,如依赖项的跟踪。
WeakMap与WeakSet:
WeakMap与Map类似,但键是对象,值任意类型,且键与对象的引用是弱的,当对象不再被引用时,键值会被自动回收。同样,WeakSet只包含对象值,且值的引用也是弱的。在响应式系统中,WeakMap用于缓存Proxy对象,避免内存泄漏问题。
总结:
Vue3利用Map和WeakMap的强大功能,实现了响应式系统的高效管理,通过弱引用机制,确保了内存的高效利用和程序执行的稳定性。深入理解这些数据结构在Vue3中的运用,有助于开发者更好地优化代码和处理内存问题。
2024-11-30 05:53
2024-11-30 03:52
2024-11-30 03:47
2024-11-30 03:41
2024-11-30 03:24
2024-11-30 03:20