皮皮网
皮皮网

【potplay源码】【时时彩源码top】【python 源码安装模块】slam源码解析

时间:2025-01-19 03:22:58 来源:街机水浒源码

1.不可错过的源码gmapping算法使用与详细解释
2.深度科普:ORB-SLAM3论文重点导读及整体算法流程梳理
3.ORBSLAM系列|ORB-SLAM论文带读(一)(划重点)
4.ORB-SLAM3 源码剖析:IMU 预积分
5.ORB-SLAM2源码系列--局部建图线程(MapPointCulling和KeyFrameCulling)
6.hdl_graph_slam|后端优化|hdl_graph_slam_nodelet.cpp|源码解读(四)

slam源码解析

不可错过的gmapping算法使用与详细解释

       了解移动机器人构建地图的必备条件、算法流程及原理,解析对gmapping算法的源码应用与解释进行深入探讨。gmapping是解析一个基于2D激光雷达使用RBPF算法完成二维栅格地图构建的SLAM算法,具有实时构建室内环境地图、源码计算量小、解析potplay源码地图精度高、源码对激光雷达扫描频率要求低等优点。解析然而,源码随着环境增大,解析构建地图所需的源码内存和计算量增大,不适用于大场景构图。解析

       gmapping算法的源码使用步骤包括了解算法、安装算法、解析更改参数、源码执行算法和保存地图。首先,需要理解gmapping基于RBPF算法的工作原理和其在小场景中的优势。接下来,通过ROS提供的功能包,以二进制方式安装gmapping算法,确保机器人具备运行所需的话题和服务,如/tf、/odom和/scan。在更改参数后,启动gmapping算法,其TF树应满足特定的配置。最后,通过命令保存地图至map.pgm和map.yaml文件。

       深入探讨gmapping的前世今生,SLAM问题通过概率描述和分解为机器人定位和地图构建两个问题进行理解。FastSLAM算法采用RBPF方法,时时彩源码top将问题分解为估计机器人轨迹和已知机器人位姿进行地图构建。在gmapping中,为解决内存爆炸和粒子耗散问题,提出降低粒子数量和选择性重采样的方法。通过极大似然估计和激光雷达观测模型优化粒子数量,同时通过权重离散程度控制重采样操作,保证算法的有效性。

       gmapping算法流程清晰,从SLAM问题的概率描述到算法分解,再到机器人位姿估计的迭代转换,直至gmapping算法的伪代码,每一步都有其明确的目的和作用。深入理解gmapping源码、已知位姿构建地图算法以及贝叶斯滤波、粒子滤波等主题的相关文章,将在未来陆续发布。

       了解gmapping论文、带中文注释的源码以及相关课件,可关注公众号获取。

       粒子滤波概念通过一个趣味解释进行了形象描述,从理论层面阐述了粒子滤波在机器人定位问题中的应用,如何根据机器人的感受逐步缩小搜索范围,最终得到准确的定位结果。

       总结gmapping算法进行地图构建的流程,从SLAM问题的全面理解到gmapping算法的具体实现,每一步都清晰明了。深入分析算法原理和流程,有助于掌握移动机器人构建地图的关键技术和方法。

深度科普:ORB-SLAM3论文重点导读及整体算法流程梳理

       本文将深入解读ORB-SLAM3的关键特点和整体算法流程,它革新了视觉和视觉惯性SLAM系统。首先,python 源码安装模块ORB-SLAM3作为首个实现短期、中期、长期数据关联的单目和双目系统,显著优于同类技术,尤其在实时性和准确性方面,其性能是其他方法的2-倍。

       通过几何和局部一致性检查,召回率提高,地图准确性增强。

       使用Atlas结构表示断开地图,实现位置识别、相机重定位等操作时的无缝拼合。

       抽象的相机表示允许灵活支持不同相机模型,只需提供投影、非投影和雅可比函数。

       ORB-SLAM3系统由几个核心组件组成,包括活跃地图的跟踪线程、局部建图线程以及回环和地图合并线程。系统利用ORB-SLAM2和ORB-SLAM-VI作为基础,通过IMU初始化技术,支持单目和立体惯性SLAM。

       跟踪线程负责实时定位和建图,利用视觉和惯性信息进行优化。

       局部建图线程在关键帧区域进行地图构建和优化,利用IMU参数进行最大后验估计。

       回环和地图合并线程通过因子图处理地图的融合和回环检测,确保地图的精度和一致性。

       在视觉-惯导SLAM中,系统不仅估计相机位姿,还涉及速度、惯性传感器偏置等。手机麻将游戏源码通过将视觉和惯性信息结合,形成一个最小化问题,通过因子图表示优化过程。

       ORB-SLAM3的源码解析和实际应用将随后进行,对视觉惯性导航和多地图SLAM有兴趣的读者不容错过。

ORBSLAM系列|ORB-SLAM论文带读(一)(划重点)

       本文介绍了一种名为ORB-SLAM的新型单目SLAM系统,该系统在各种环境条件下都能实时运行。ORB-SLAM具有鲁棒性,支持宽基线回环和重定位,并且提供全自动初始化。系统的核心设计是基于相同的特征用于跟踪、建图、重定位和回环,这使得系统高效、简单且可靠。ORB特征因其对视角和光照变化的鲁棒性而被采用,允许在不依赖GPU的情况下实现实时性能。系统在大环境下的实时运行能力归功于共视图的使用,跟踪和建图着重于局部共视区域,与全局地图尺寸无关。实时回环检测通过基于位姿图(本质图)的优化实现,而实时重定位则支持从跟踪失败中恢复位姿,并增强地图重用性。系统还引入了一种新的基于模型选择的自动且鲁棒的初始化过程,允许创建平面和非平面场景的初始化地图。一种针对地图点和关键帧选择的适者生存策略提高了跟踪的鲁棒性,并且减少了冗余关键帧,增强了长时间运行的能力。

       ORB-SLAM在广泛评估中证明了其优越性,特别是在室内和室外环境的主流公开数据集上的评估。与最先进的渔夫系统指标源码单目SLAM方法相比,ORB-SLAM实现了前所未有的性能。系统被设计为完整且可靠,提供了一种最高效、精确且易于实施的解决方案。出于造福SLAM社区的目的,源代码已公开,以便其他研究者和开发者能够利用和改进这一系统。演示视频和代码可以在项目网页上找到。

ORB-SLAM3 源码剖析:IMU 预积分

       IMU的数据结构在ORB-SLAM3中用于表示机体坐标系中的测量值。在特定时刻,加速度计测量线加速度和陀螺仪测量角速度。假设这些测量值包含高斯白噪声,且偏置建模为随机游走,其导数也是高斯白噪声。将重力转换到机体坐标系后,得到连续视觉帧间的IMU预积分结果。这些预积分包括旋转、速度和位置测量,以及整个测量向量的协方差矩阵。

       在ORB-SLAM3中,每帧的IMU预积分在tracking线程中计算,具体由Tracking::PreintegrateIMU()函数执行。每帧间的IMU测量通过src/ImuTypes.cc中的Preintegrated::IntegrateNewMeasurement()进行积分。主要步骤如下:首先进行偏置校正,然后计算位置、速度的增量,接着计算旋转的增量。旋转变化量以李代数中的旋转向量表示,并通过指数映射转换为旋转矩阵。旋转矩阵按旋转顺序右乘。最后,更新协方差矩阵,并调整与偏置修正相关的位置、速度和旋转雅可比。

       IMU的偏置校正、测量、标定和预积分类定义在include/ImuTypes.h文件中。

       值得注意的是,对于初学者,了解GDB调试方法是提高ORB-SLAM3源码理解效率的重要步骤。GDB提供了一系列功能,允许开发者在运行程序时设置断点、查看变量值、追踪程序执行流程等,从而深入分析代码行为和潜在问题。

ORB-SLAM2源码系列--局部建图线程(MapPointCulling和KeyFrameCulling)

       ORB-SLAM2源码系列--局部建图线程详解

       MapPointCulling模块负责筛选新加入的地图点,确保地图质量。在ProcessNewKeyFrame函数中,新点被暂存于mlpRecentAddedMapPoints。筛选过程包括:

       根据相机类型设定不同的观测阈值

       遍历新点,若点已标记为坏点则直接从队列中移除

       若点的观察帧数少于预期值的%,或者观察相机数量少于阈值cnThObs,即使过了两个关键帧也会被删除

       只有经过三个关键帧且未被剔除的点,才会被认定为高质量点,仅从队列移除

       另一方面,KeyFrameCulling则针对共视图中的关键帧进行冗余检测。步骤如下:

       提取当前关键帧的共视关键帧,并遍历它们

       对于每个共视关键帧,检查其地图点:若至少有3个其他关键帧观测到,被认为是冗余点

       对于双目或RGB-D,仅考虑近距离且深度值大于零的地图点

       若关键帧%以上的有效地图点被判断为冗余,该关键帧将被标记为冗余并删除

       这样的筛选机制确保了地图数据的准确性和效率。

hdl_graph_slam|后端优化|hdl_graph_slam_nodelet.cpp|源码解读(四)

       hdl_graph_slam源码解读(八):后端优化

       后端概率图构建核心:hdl_graph_slam_nodelet.cpp

       整体介绍

       这是整个系统建图的核心,综合所有信息进行优化。所有的信息都会发送到这个节点并加入概率图中。

       包含信息

       1)前端里程计传入的位姿和点云

       2)gps信息

       3)Imu信息

       4)平面拟合的参数信息

       处理信息步骤

       1)在对应的callback函数中接收信息,并放入相应的队列

       2)根据时间戳对队列中的信息进行顺序处理,加入概率图

       其他内容

       1)执行图优化,这是一个定时执行的函数,闭环检测也在这个函数里

       2)生成全局地图并定时发送,即把所有关键帧拼一起,得到全局点云地图,然后在一个定时函数里发送到rviz上去

       3)在rviz中显示顶点和边,如果运行程序,会看到rviz中把概率图可视化了

       关键帧同步与优化

       cloud_callback

       cloud_callback(const nav_msgs::OdometryConstPtr& odom_msg,const sensor_msgs::PointCloud2::ConstPtr& cloud_msg)

       该函数主要是odom信息与cloud信息的同步,同步之后检查关键帧是否更新。

       关键帧判断:这里主要看关键帧设置的这两个阈值keyframe_delta_trans、keyframe_delta_angle

       变成关键帧的要求就是:/hdl_graph_slam/include/hdl_graph_slam/keyframe_updater.hpp

       优化函数

       optimization_timer_callback(const ros::TimerEvent& event)

       函数功能:将所有的位姿放在posegraph中开始优化

       loop detection 函数:主要就是将当前帧和历史帧遍历,寻找loop。

       闭环匹配与信息矩阵计算

       匹配与闭环检测

       潜在闭环完成匹配(matching 函数)

       不同loop的信息矩阵计算(hdl_graph_slam/information_matrix_calculator.cpp)

       gps对应的信息矩阵

       hdl_graph_slam/graph_slam.cpp

       添加地面约束

       使用add_se3_plane_edge函数的代码

       执行图优化

       优化函数optimization_timer_callback

       执行图优化,闭环检测检测闭环并加到了概率图中,优化前

       生成简化版关键帧,KeyFrameSnapshot用于地图拼接

       生成地图并定时发送

       生成地图:简化版关键帧拼接

       定时发送:src/hdl_graph_slam_nodelet.cpp文件中

       系统性能与扩展性

       hdl_graph_slam性能问题在于帧间匹配和闭环检测精度不足,系统代码设计好,模块化强,易于扩展多传感器数据融合。

       总结

       hdl_graph_slam后端优化是关键,涉及大量信息融合与概率图构建。系统设计清晰,扩展性强,但在性能上需改进。

非线性优化(三):g2o源代码

       新年伊始,让我们探讨一下g2o(通用图优化)在SLAM(Simultaneous Localization and Mapping)中的后端优化库应用。在《十四讲》中,我们对g2o有了初步的了解,并总结了其在SLAM中的使用情况。与ceres相比,g2o的文档较为简略,主要依赖于两篇论文进行参考。本文将深入探讨g2o的源代码,特别是核心文件夹中的部分,以揭示这个在SLAM领域广为人知的后端优化库的内在机理。

       首先,让我们通过一张类关系图来直观理解g2o的架构。整个g2o系统分为三层:HyperGraph、OptimizableGraph、以及SparseOptimizer。HyperGraph作为最高层,提供了一个高度抽象的框架,其内部通过内类的方式实现了Vertex和Edge的结构。Vertex和Edge相互关联,Vertex存储与节点相关联的边的集合,而Edge则记录了与之链接的节点信息。HyperGraph提供了基本的节点和边的操作,如获取、设置等,同时也包含了更复杂的功能,如节点和边的合并、删除等。

       OptimizableGraph继承自HyperGraph,进一步丰富了Vertex和Edge的实现,为图优化提供了更具体的接口。OptimizableGraph引入了海塞矩阵和b向量的概念,以及与之相关的操作,如获取海塞矩阵元素、设置参数位置等。此外,它还支持通过栈操作(pop、push)来管理节点信息。

       在OptimizableGraph之上,SparseOptimizer作为优化操作的对象,实现了优化的接口,并提供了初始化、辅助函数以及优化的核心函数。SparseOptimizer通过内部类实现了Vertex和Edge的实例化,为具体的优化算法提供了操作图的接口。

       在实现细节方面,BaseVertex和BaseEdge类继承了OptimizableGraph中的相应类,实现了节点和边的基本功能。BaseVertex类负责记录节点的海塞矩阵、b向量和估计值,并提供了数值求导的备份和恢复功能。BaseEdge类则负责处理测量信息和信息矩阵的计算,包括计算误差、构造二次形式等。此外,不同类型的边(BaseUnaryEdge、BaseBinaryEdge、BaseMultiEdge)通过继承BaseEdge类,实现了不同链接节点数量的边的特殊操作。

       鲁棒核函数的实现是g2o优化框架中一个关键部分,它在处理非线性优化问题时提供了鲁棒性,确保了优化过程的稳定性。g2o通过RobustKernel虚基类提供了设置和获取核函数参数的接口,并在具体实现中使用了简化版本的计算公式,以保证信息矩阵的正定性。

       最后,OptimizationAlgorithm类定义了优化器的一系列接口,如初始化、计算边际值和求解等。g2o的优化算法包括GN、LM和dog-leg,它们分别实现了不同的求解策略,而具体的矩阵求解任务则通过Solver类及其派生类(如BlockSolver)完成。BlockSolver类提供了一个通用框架,允许用户自定义线性求解器,如直接求解、迭代求解等。

       综上所述,g2o通过层次化的类结构,提供了从抽象到具体、从基础到进阶的图优化解决方案,其设计旨在高效、鲁棒地解决SLAM中的后端优化问题。深入理解g2o的源代码,对于开发者和研究者来说,不仅能够提高优化算法的实现效率,还能深刻理解SLAM系统中的优化机制。

更多内容请点击【休闲】专栏