1.分析LinuxUDP源码实现原理linuxudp源码
2.Linux内核网络udp数据包发送(二)UDP协议层分析
3.如何在Linux中打开UDP网络协议linux打开udp
4.基于Linux的源码远程指令系统(使用udp而不是tcp)
分析LinuxUDP源码实现原理linuxudp源码
Linux UDP源码实现原理分析
本文将重点介绍Linux UDP(用户数据报协议)的源码实现原理。UDP是源码面向无连接的协议。 它为应用程序在IP网络之间提供端到端的源码通信,而不需要维护连接状态。源码
从源码来看,源码Linux UDP实现分为两个主要部分,源码获取定位链接源码分别为系统调用和套接字框架。源码 系统调用主要处理一些针对特定功能层的源码系统调用,例如socket、源码bind、源码listen等,源码它们对socket进行配置,源码为应用程序创建监听地址或连接到指定的源码IP地址。
而套接字框架(socket framework),源码则主要处理系统调用之后的源码各种功能,如创建路由表、根据报文的地址信息创建路由条目,以及把报文发给目标主机,并处理接收到的报文等。
其中,send()系统调用主要是微星棋牌源码2021向指定的UDP端口发送数据包,它会检查socket缓存中是否有数据要发送,如果有,则将该socket中的数据封装成报文,然后向本地链路层发送报文。
接收数据的recv()系统调用主要是侦听和接收数据报文,首先它根据接口上接收到的数据报文的地址找到socket表,如果有对应的socket,则将数据报文的数据存入socket缓存,否则将数据报文丢弃。
最后,还有一些主要函数,用于管理UDP 端口,如udp_bind()函数,该函数主要是将指定socket绑定到指定UDP端口;udp_recvmsg()函数用于接收UDP端口上的数据;udp_sendmsg()函数用于发送UDP数据报。
以上就是Linux UDP源码实现原理的分析,由上面可以看出,Linux实现UDP协议需要几层构架, 从应用层的系统调用到网络子系统的实现,都在这些框架的支持下实现。这些框架统一了子系统的接口,使得UDP实现在Linux上更加规范化。python图形代码源码
Linux内核网络udp数据包发送(二)UDP协议层分析
在Linux内核中,UDP数据包的发送涉及到udp_sendmsg和udp_send_skb函数的深入处理。首先,UDP插入优化允许内核累积用户数据,通过corking技术。用户通过设置或请求辅助数据(如IP_PKTINFO)来影响发送行为,如指定源地址或自定义IP选项。
在数据发送过程中,UDP套接字的状态影响了数据处理,如获取目的地址、设置源地址和设备索引,以及使用辅助消息设置IP选项。套接字状态为已连接时,会使用TCP状态信息。对于未连接的套接字,会检查自定义IP选项,如SRR和TOS,根据用户设置决定数据包属性。
发送多播或单播数据时,UDP会根据目标地址和用户请求选择正确的python写域名源码设备和源地址。路由过程包括快速和慢速路径,处理路由记录和确认ARP缓存的有效性。错误处理包括确认缓存和UDP套接字状态的更新。
数据被封装到skb中,经过ip_make_skb函数的复杂处理,包括UFO和SG支持,以及对发送缓冲大小的管理。如果有错误,错误计数会相应增加。最后,udp_send_skb将skb发送到IP协议层,更新发送统计信息。
为了监控和调优UDP性能,可以通过/proc/net/snmp和/proc/net/udp查看统计文件。系统参数如net.core.wmem_max可以调整发送缓冲大小,以优化网络性能。通过本文,我们深入了解了UDP数据包发送的底层机制,后续将探讨IP协议层的处理。
拓展资源:欲了解更多内核技术,足球王者源码欢迎加入技术交流群,获取学习资料和内核技术分享。直达链接:Linux内核技术交流群,以及内核源码学习路线、视频教程和代码资料。
如何在Linux中打开UDP网络协议linux打开udp
每个网络协议都有其自身的特点,而在Linux系统中启用UDP(用户数据报协议)网络协议也是需要一定的步骤的。UDP是一种简单的、可靠的、非连接的传输层协议,本文将详细说明如何在Linux上实现UDP网络协议。
首先,需要确认Linux系统中是否已安装好UDP协议,可以使用以下命令:
`# ls /proc/sys/net/unix`
如果存在udp目录,则说明UDP网络协议已安装完成。
其次,要在Linux系统中启用UDP协议,可以使用以下命令:
`# sysctl -w net.ipv4.ip_forward=1`
这条命令会启用Linux系统中的UDP协议,从而确保UDP协议可以正常使用。
此外,要确保Linux系统的UDP网络协议设置持久生效,可以使用以下命令:
`# echo “net.ipv4.ip_forward=1” >> /etc/sysctl.conf`
这条命令可以将UDP网络协议设置写入/etc/sysctl.conf文件,从而实现设置的持久性。
最后,如果要检查在Linux系统中启用的UDP网络协议,可以使用以下命令:
`# netstat -un`
这条命令可以显示UDP网络协议当前的状态,以及各种连接的信息。
总之,要在Linux系统中启用UDP网络协议,首先要确认UDP协议是否已安装,然后输入命令来启用UDP协议,最后可以使用netstat -un命令查看UDP协议的状态以及连接状态。
基于Linux的远程指令系统(使用udp而不是tcp)
一. Linux下UDP编程框架
使用UDP进行程序设计可以分为客户端和服务器端两部分。
1.服务器端程序包括:
建立套接字将套接字地址结构进行绑定读写数据关闭套接字2.客户端程序包括:
建立套接字读写数据关闭套接字3.服务器端和客户端程序之间的差别
服务器端和客户端两个流程之间的主要差别在于对地址的绑定函数(bind()函数),而客户端可以不用进行地址和端口的绑定操作。
二.Linux中UDP套接字函数
从图可知,UDP协议的服务端程序设计的流程分为套接字建立,套接字与地址结构进行绑定,收发数据,关闭套接字;客户端程序流程为套接字建立,收发数据,关闭套接字等过程。它们分别对应socket(),bind(),sendto(),recvfrom(),和close()函数。
网络程序通过调用socket()函数,会返回一个用于通信的套接字描述符。Linux应用程序在执行任何形式的I/O操作的时候,程序是在读或者写一个文件描述符。因此,可以把创建的套接字描述符看成普通的描述符来操作,并通过读写套接字描述符来实现网络之间的数据交流。
1. socket
1> 函数原型:
int socket(int domain,int type,int protocol)
2> 函数功能:
函数socket()用于创建一个套接字描述符。
3> 形参:
domain:用于指定创建套接字所使用的协议族,在头文件中定义。
常见的协议族如下:
AF_UNIX:创建只在本机内进行通信的套接字。
AF_INET:使用IPv4 TCP/IP协议
AF_INET6:使用IPv6 TCP/IP协议
说明:
AF_UNIX只能用于单一的UNIX系统进程间通信,而AF_INET是针对Interne的,因而可以允许在远程主机之间通信。一般把它赋为AF_INET。
type:指明套接的类型,对应的参数如下SOCK_STREAM:创建TCP流套接字
SOCK_DGRAM:创建UDP数据报套接字
SOCK_RAW:创建原始套接字
protocol:参数protocol通常设置为0,表示通过参数domain指定的协议族和参数type指定的套接字类型来确定使用的协议。当为原始套接字时,系统无法唯一的确定协议,此时就需要使用使用该参数指定所使用的协议。
4> 返回值:执行成功后返回一个新创建的套接字;若有错误发生则返回一个-1,错误代码存入errno中。
5> 举例:调用socket函数创建一个UDP套接字
int sock_fd;
sock_fd = socket(AF_INET,SOCK_DGRAM,0);
if(sock_fd < 0){
perror(“socket”);
exit(1);
}
2. bind
1> 函数原型:
int bind(int sockfd,struct sockaddr *my_addr,socklen_taddrlen)
2> 函数功能
函数bind()的作用是将一个套接字文件描述符与一个本地地址绑定在一起。
3> 形参:
sockfd:sockfd是调用socket函数返回的文件描述符;addrlen是sockaddr结构的长度。my_addr: 是一个指向sockaddr结构的指针,它保存着本地套接字的地址(即端口和IP地址)信息。不过由于系统兼容性的问题,一般不使用这个结构,而使用另外一个结构(struct sockaddr_in)来代替4> 套接字地址结构:
(1)structsockaddr:
结构struct sockaddr定义了一种通用的套接字地址,它在
Linux/socket.h 中定义。
struct sockaddr{
unsigned short sa_family;/*地址类型,AF_XXX*/
char sa_data[];/*字节的协议地址*/
}
a. sin_family:表示地址类型,对于使用TCP/IP协议进行的网络编程,该值只能是AF_INET.
b. sa_data:存储具体的协议地址。
(2)sockaddr_in
每种协议族都有自己的协议地址格式,TCP/IP协议组的地址格式为结构体struct sockaddr_in,它在netinet/in.h头文件中定义。
struct sockaddr_in{
unsigned short sin_family;/*地址类型*/
unsigned short sin_port;/*端口号*/
struct in_addr sin_addr;/*IP地址*/
unsigned char sin_zero[8];/*填充字节,一般赋值为0*/
}
a. sin_family:表示地址类型,对于使用TCP/IP协议进行的网络编程,该值只能是AF_INET.
b. sin_port:是端口号
c. sin_addr:用来存储位的IP地址。
d. 数组sin_zero为填充字段,一般赋值为0.
e. structin_addr的定义如下:
struct in_addr{
unsignedlong s_addr;
}
结构体sockaddr的长度为字节,结构体sockaddr_in的长度为字节。可以将参数my_addr的sin_addr设置为INADDR_ANY而不是某个确定的IP地址就可以绑定到任何网络接口。对于只有一IP地址的计算机,INADDR_ANY对应的就是它的IP地址;对于多宿主主机(拥有多个网卡),INADDR_ANY表示本服务器程序将处理来自所有网络接口上相应端口的连接请求
5> 返回值:
函数成功后返回0,当有错误发生时则返回-1,错误代码存入errno中。
6>举例:调用socket函数创建一个UDP套接字
struct sockaddr_in addr_serv,addr_client;/*本地的地址信息*/
memset(&serv_addr,0,sizeof(struct sockaddr_in));
addr_serv.sin_family = AF_INET;/*协议族*/
addr_serv.sin_port = htons(SERV_PORT);/*本地端口号*/
addr_serv.sin_addr.s_addr = htonl(INADDR_ANY); /*任意本地地址*/
/*套接字绑定*/
if(bind(sock_fd,(struct sockaddr *)&addr_serv),sizeof(structsockaddr_in)) <0)
{
perror(“bind”);
exit(1);
}
3.close
1>函数原型:
int close(intfd);
2>函数功能:
函数close用来关闭一个套接字描述符。
3>函数形参:
参数fd为一个套接字描述符。4>返回值:
执行成功返回0,出错则返回-1.错误代码存入errno中。
说明:
以上三个函数中,前两个要包含头文件
#include
#include
后一个包含:
#include
4.sendto
1>函数原型:
#include
#include
ssize_t sendo(ints,const void *msg,size_t len,int flags,const struct sockaddr *to,socklen_ttolen);
2>函数功能:
向目标主机发送消息
3>函数形参:
s:套接字描述符。*msg:发送缓冲区len:待发送数据的长度flags:控制选项,一般设置为0或取下面的值(1)MSG_OOB:在指定的套接字上发送带外数据(out-of-band data),该类型的套接字必须支持带外数据(eg:SOCK_STREAM).
(2)MSG_DONTROUTE:通过最直接的路径发送数据,而忽略下层协议的路由设置。
to:用于指定目的地址tolen:目的地址的长度。4>函数返回值:
执行成功后返回实际发送数据的字节数,出错返回-1,错误代码存入errno中。
5>函数举例:
char send_buf[BUFFERSIZE];
struct sockaddr_in addr_client;
memset(&addr_client,0,sizeof(struct sockaddr_in));
addr_client.sin_family = AF_INET;
addr_client.sin_port = htons(DEST_PORT);
if(inet_aton(“...”,&addr_client.sin_addr)<0){
perror(“inet_aton”);
exit(1);
}
if(sendto(sock_fd,send_buf,len,0,(strut sockaddr*)&addr_client,sizeof(struct sockaddr_in)) <0){
perror(“sendto”);
exit(1);
}
5.recvfrom
1>函数原型:
#include
#include
ssize_t recvfrom(int s,void *buf,size_t len,intflags,struct sockaddr *from,socklen_t *fromlen);
2>函数功能:接收数据
3>函数形参:
int s:套接字描述符buf:指向接收缓冲区,接收到的数据将放在这个指针所指向的内存空间。len:指定了缓冲区的大小。flags:控制选项,一般设置为0或取以下值(1)MSG_OOB:请求接收带外数据
(2)MSG_PEEK:只查看数据而不读出
(3)MSG_WAITALL:只在接收缓冲区时才返回。
*from:保存了接收数据报的源地址。*fromlen:参数fromlen在调用recvfrom前为参数from的长度,调用recvfrom后将保存from的实际大小。4>函数返回值:
执行成功后返回实际接收到数据的字节数,出错时则返回-1,错误代码存入errno中。
5>函数实例:
char recv_buf[BUFFERSIZE];
struct sockaddr_in addr_client;
int src_len;
src_len = sizeof(struct sockaddr_in);
int src_len;
src_len = sizeof(struct sockaddr_in);
if(recvfrom(sock_fd,recv_buf,sizeof(recv_buf),0,(structsockaddr *)&src_addr,&src_len)<0){
perror(“again_recvfrom”);
exit(1);
}
三.UDP编程实例
客户端向服务器发送字符串Hello tiger,服务器接收到数据后将接收到字符串发送回客户端。
1.服务器端程序
1 #include
2 #include
3 #include
4 #include
5 #include
6 #include
7 #include
8 #include
9
#define SERV_PORT
int main()
{
int sock_fd; //套接子描述符号
int recv_num;
int send_num;
int client_len;
char recv_buf[];
struct sockaddr_in addr_serv;
struct sockaddr_in addr_client;//服务器和客户端地址
sock_fd = socket(AF_INET,SOCK_DGRAM,0);
if(sock_fd < 0){
perror("socket");
exit(1);
} else{
printf("sock sucessful\n");
}
//初始化服务器断地址
memset(&addr_serv,0,sizeof(struct sockaddr_in));
addr_serv.sin_family = AF_INET;//协议族
addr_serv.sin_port = htons(SERV_PORT);
addr_serv.sin_addr.s_addr = htonl(INADDR_ANY);//任意本地址
client_len = sizeof(struct sockaddr_in);
/*绑定套接子*/
if(bind(sock_fd,(struct sockaddr *)&addr_serv,sizeof(struct sockaddr_in))<0 ){
perror("bind");
exit(1);
} else{
printf("bind sucess\n");
}
while(1){
printf("begin recv:\n");
recv_num = recvfrom(sock_fd,recv_buf,sizeof(recv_buf),0,(struct sockaddr *)&addr_client,&client_len);
if(recv_num < 0){
printf("bad\n");
perror("again recvfrom");
exit(1);
} else{
recv_buf[recv_num]='\0';
printf("recv sucess:%s\n",recv_buf);
}
printf("begin send:\n");
send_num = sendto(sock_fd,recv_buf,recv_num,0,(struct sockaddr *)&addr_client,client_len);
if(send_num < 0){
perror("sendto");
exit(1);
} else{
printf("send sucessful\n");
}
}
close(sock_fd);
return 0;
}
2.客户端程序
1 #include
2 #include
3 #include
4 #include
5 #include
6
7 #include
8 #include
9 #include
#define DEST_PORT
#define DSET_IP_ADDRESS "..1."
int main()
{
int sock_fd;/*套接字文件描述符*/
int send_num;
int recv_num;
int dest_len;
char send_buf[]={ "hello tiger"};
char recv_buf[];
struct sockaddr_in addr_serv;/*服务端地址,客户端地址*/
sock_fd = socket(AF_INET,SOCK_DGRAM,0);//创建套接子
//初始化服务器端地址
memset(&addr_serv,0,sizeof(addr_serv));
addr_serv.sin_family = AF_INET;
addr_serv.sin_addr.s_addr = inet_addr(DSET_IP_ADDRESS);
addr_serv.sin_port = htons(DEST_PORT);
dest_len = sizeof(struct sockaddr_in);
printf("begin send:\n");
send_num = sendto(sock_fd,send_buf,sizeof(send_buf),0,(struct sockaddr *)&addr_serv,dest_len);
if(send_num < 0){
perror("sendto");
exit(1);
} else{
printf("send sucessful:%s\n",send_buf);
}
recv_num = recvfrom(sock_fd,recv_buf,sizeof(recv_buf),0,(struct sockaddr *)&addr_serv,&dest_len);
if(recv_num <0 ){
perror("recv_from");
exit(1);
} else{
printf("recv sucessful\n");
}
recv_buf[recv_num]='\0';
printf("the receive:%s\n",recv_buf);
close(sock_fd);
return 0;
}
2024-11-23 08:30
2024-11-23 08:22
2024-11-23 07:55
2024-11-23 07:38
2024-11-23 06:38
2024-11-23 06:37
2024-11-23 06:18
2024-11-23 06:11