1.如何修改这句源码?
2.qr code是正源什么?
3.C语言中,已知64字节unsigned char数组,源码找出64字节数组中连续相同的正源16个字节,有什么好的源码算法吗?
如何修改这句源码?
根据错误信息,看起来是正源因为某个操作数缺少了操作符导致的错误。具体来说,源码排队信息发布系统源码可能是正源在该句中,某个操作数的源码前后缺少了相应的运算符,导致程序无法正确执行。正源
为了修复这个问题,源码你需要检查该句的正源每个操作数是否正确,并确保其前后都有相应的源码运算符。如果无法确定哪个操作数有问题,正源可以逐一排除,源码暂时注释掉一些操作数,正源然后重新编译运行程序,直到发现错误所在为止。
以下是修改该句源码的建议:
{ 引用分钟肯定}
分钟值 := KD.K#MIN < AND CROSS(KD.K#MIN, KD.D#MIN);
分钟值1 := KD.K#MIN < AND CROSS(KD.K#MIN, KD.D#MIN);
分钟值2 := 金龙火凤.金龙#MIN < AND CROSS(金龙火凤.金龙#MIN, 金龙火凤.火凤#MIN);
分钟值3 := 金龙火凤.金龙#MIN < AND CROSS(金龙火凤.金龙#MIN, 金龙火凤.火凤#MIN);
DRAWTEXT(分钟值2, L*0., '6');
COLORRED;
DRAWICON(CROSS(MA(C,), MA(C,)), MA(C,), );
在修改后的代码中,我对该句进行了格式化和简化,以便更容易阅读和理解。我还将每个操作数与其前后的运算符分开,以确保程序可以正确解析每个操作数。另外,我还将另外两个语句放在了该句的后面,以避免它们之间的语法错误。
qr code是什么?
基础知识
首先,我们先说一下二维码一共有个尺寸。官方叫版本Version。Version 1是 x 的矩阵,Version 2是 x 的矩阵,Version 3是源码编辑公式的尺寸,每增加一个version,就会增加4的尺寸,公式是:(V-1)*4 + (V是版本号) 最高Version ,(-1)*4+ = ,所以最高是 x 的正方形。
下面我们看看一个二维码的样例:
定位图案
Position Detection Pattern是定位图案,用于标记二维码的矩形大小。这三个定位图案有白边叫Separators for Postion Detection Patterns。之所以三个而不是四个意思就是三个就可以标识一个矩形了。
Timing Patterns也是用于定位的。原因是二维码有种尺寸,尺寸过大了后需要有根标准线,不然扫描的时候可能会扫歪了。
Alignment Patterns 只有Version 2以上(包括Version2)的二维码需要这个东东,同样是为了定位用的。
功能性数据
Format Information 存在于所有的尺寸中,用于存放一些格式化数据的。
Version Information 在 >= Version 7以上,需要预留两块3 x 6的区域存放一些版本信息。
数据码和纠错码
除了上述的那些地方,剩下的地方存放 Data Code 数据码 和 Error Correction Code 纠错码。
数据编码
我们先来说说数据编码。QR码支持如下的编码:
Numeric mode 数字编码,从0到9。如果需要编码的数字的个数不是3的倍数,那么,最后剩下的1或2位数会被转成4或7bits,则其它的每3位数字会被编成 ,,bits,情怀麻将源码编成多长还要看二维码的尺寸(下面有一个表Table 3说明了这点)
Alphanumeric mode 字符编码。包括 0-9,大写的A到Z(没有小写),以及符号$ % * + – . / : 包括空格。这些字符会映射成一个字符索引表。如下所示:(其中的SP是空格,Char是字符,Value是其索引值) 编码的过程是把字符两两分组,然后转成下表的进制,然后转成bits的二进制,如果最后有一个落单的,那就转成6bits的二进制。而编码模式和字符的个数需要根据不同的Version尺寸编成9, 或个二进制(如下表中Table 3)
Byte mode, 字节编码,可以是0-的ISO--1字符。有些二维码的扫描器可以自动检测是否是UTF-8的编码。
Kanji mode 这是日文编码,也是双字节编码。同样,也可以用于中文编码。日文和汉字的编码会减去一个值。如:在0X to 0X9FFC中的字符会减去,在0XE到0XEBBF中的字符要减去0XC,然后把结果前两个进制位拿出来乘以0XC0,然后再加上后两个进制位,最后转成bit的编码。如下图示例:
Extended Channel Interpretation (ECI) mode 主要用于特殊的字符集。并不是所有的扫描器都支持这种编码。
Structured Append mode 用于混合编码,也就是说,这个二维码中包含了多种编码格式。后台源码扒
FNC1 mode 这种编码方式主要是给一些特殊的工业或行业用的。比如GS1条形码之类的。
简单起见,后面三种不会在本文 中讨论。
下面两张表中,
Table 2 是各个编码格式的“编号”,这个东西要写在Format Information中。注:中文是
Table 3 表示了,不同版本(尺寸)的二维码,对于,数字,字符,字节和Kanji模式下,对于单个编码的2进制的位数。(在二维码的规格说明书中,有各种各样的编码规范表,后面还会提到)
下面我们看几个示例,
示例一:数字编码
在Version 1的尺寸下,纠错级别为H的情况下,编码:
1. 把上述数字分成三组:
2. 把他们转成二进制: 转成 ; 转成 ; 转成 。
3. 把这三个二进制串起来:
4. 把数字的个数转成二进制 (version 1-H是 bits ): 8个数字的二进制是
5. 把数字编码的标志和第4步的编码加到前面:
示例二:字符编码
在Version 1的尺寸下,纠错级别为H的情况下,编码: AC-
1. 从字符索引表中找到 AC- 这五个字条的索引 (,,,4,2)
2. 两两分组: (,) (,4) (2)
3.把每一组转成bits的二进制:
(,) *+ 等于 转成 (,4) *+4 等于 转成 (2) 等于 2 转成
4. 把这些二进制连接起来:
5. 把字符的个数转成二进制 (Version 1-H为9 bits ): 5个字符,5转成
6. 在头上加上编码标识 和第5步的个数编码:
结束符和补齐符
假如我们有个HELLO WORLD的字符串要编码,根据上面的示例二,我们可以得到下面的编码,
编码
字符数
HELLO WORLD的编码
我们还要加上结束符:
编码
字符数
HELLO WORLD的编码
结束
按8bits重排
如果所有的编码加起来不是8个倍数我们还要在后面加上足够的0,比如上面一共有个bits,所以,我们还要加上2个0,摩臣源码然后按8个bits分好组:
补齐码(Padding Bytes)
最后,如果如果还没有达到我们最大的bits数的限制,我们还要加一些补齐码(Padding Bytes),Padding Bytes就是重复下面的两个bytes: (这两个二进制转成十进制是和,我也不知道为什么,只知道Spec上是这么写的)关于每一个Version的每一种纠错级别的最大Bits限制,可以参看QR Code Spec的第页到页的Table-7一表。
假设我们需要编码的是Version 1的Q纠错级,那么,其最大需要个bits,而我们上面只有个bits,所以,还需要补个bits,也就是需要3个Padding Bytes,我们就添加三个,于是得到下面的编码:
上面的编码就是数据码了,叫Data Codewords,每一个8bits叫一个codeword,我们还要对这些数据码加上纠错信息。
纠错码
上面我们说到了一些纠错级别,Error Correction Code Level,二维码中有四种级别的纠错,这就是为什么二维码有残缺还能扫出来,也就是为什么有人在二维码的中心位置加入图标。
错误修正容量
L水平 7%的字码可被修正
M水平 %的字码可被修正
Q水平 %的字码可被修正
H水平 %的字码可被修正
那么,QR是怎么对数据码加上纠错码的?首先,我们需要对数据码进行分组,也就是分成不同的Block,然后对各个Block进行纠错编码,对于如何分组,我们可以查看QR Code Spec的第页到页的Table-到Table-的定义表。注意最后两列:
Number of Error Code Correction Blocks :需要分多少个块。
Error Correction Code Per Blocks:每一个块中的code个数,所谓的code的个数,也就是有多少个8bits的字节。
举个例子:上述的Version 5 + Q纠错级:需要4个Blocks(2个Blocks为一组,共两组),头一组的两个Blocks中各个bits数据 + 各 9个bits的纠错码(注:表中的codewords就是一个8bits的byte)(再注:最后一例中的(c, k, r )的公式为:c = k + 2 * r,因为后脚注解释了:纠错码的容量小于纠错码的一半)
下图给一个5-Q的示例(因为二进制写起来会让表格太大,所以,我都用了十进制,我们可以看到每一块的纠错码有个codewords,也就是个8bits的二进制数)
组
块
数据
对每个块的纠错码
1 1 6 6
2 7 7 6
2 1 7 6 7
2 6 5 2
注:二维码的纠错码主要是通过Reed-Solomon error correction(里德-所罗门纠错算法)来实现的。对于这个算法,对于我来说是相当的复杂,里面有很多的数学计算,比如:多项式除法,把1-的数映射成2的n次方(0<=n<=)的伽罗瓦域Galois Field之类的神一样的东西,以及基于这些基础的纠错数学公式,因为我的数据基础差,对于我来说太过复杂,所以我一时半会儿还有点没搞明白,还在学习中,所以,我在这里就不展开说这些东西了。还请大家见谅了。(当然,如果有朋友很明白,也繁请教教我)
最终编码
穿插放置
如果你以为我们可以开始画图,你就错了。二维码的混乱技术还没有玩完,它还要把数据码和纠错码的各个codewords交替放在一起。如何交替呢,规则如下:
对于数据码:把每个块的第一个codewords先拿出来按顺度排列好,然后再取第一块的第二个,如此类推。如:上述示例中的Data Codewords如下:
块 1 6 6
块 2 7 7 6
块 3 7 6 7
块 4 6
我们先取第一列的:, , ,
然后再取第二列的:, , , , ,, ,
如此类推:, , , , ,, , ……… ……… ,,6,,,7,
对于纠错码,也是一样:
块 1
块 2
块 3
块 4 5 2
和数据码取的一样,得到:,,,,,,,,…… …… ,,,
然后,再把这两组放在一起(纠错码放在数据码之后)得到:
, , , , , , , , , , , , , 7, , , , , , , , , 7, 6, , , , , , 7, , , , , , , , , , , 6, , , , , , 6, , 6, , , , , , , , , 6, , , 7, , , , , , , , , , , , , 5, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , 2, , , , , , , , , , , , , , , ,
这就是我们的数据区。
Remainder Bits
最后再加上Reminder Bits,对于某些Version的QR,上面的还不够长度,还要加上Remainder Bits,比如:上述的5Q版的二维码,还要加上7个bits,Remainder Bits加零就好了。关于哪些Version需要多少个Remainder bit,可以参看QR Code Spec的第页的Table-1的定义表。
画二维码图
Position Detection Pattern
首先,先把Position Detection图案画在三个角上。(无论Version如何,这个图案的尺寸就是这么大)
Alignment Pattern
然后,再把Alignment图案画上(无论Version如何,这个图案的尺寸就是这么大)
关于Alignment的位置,可以查看QR Code Spec的第页的Table-E.1的定义表(下表是不完全表格)
下图是根据上述表格中的Version8的一个例子(6,,)
Timing Pattern
接下来是Timing Pattern的线(这个不用多说了)
Format Information
再接下来是Formation Information,下图中的蓝色部分。
Format Information是一个个bits的信息,每一个bit的位置如下图所示:(注意图中的Dark Module,那是永远出现的)
这个bits中包括:
5个数据bits:其中,2个bits用于表示使用什么样的Error Correction Level, 3个bits表示使用什么样的Mask
个纠错bits。主要通过BCH Code来计算
然后个bits还要与做XOR操作。这样就保证不会因为我们选用了的纠错级别和的Mask,从而造成全部为白色,这会增加我们的扫描器的图像识别的困难。
下面是一个示例:
关于Error Correction Level如下表所示:
关于Mask图案如后面的Table 所示。
Version Information
再接下来是Version Information(版本7以后需要这个编码),下图中的蓝色部分。
Version Information一共是个bits,其中包括6个bits的版本号以及个bits的纠错码,下面是一个示例:
而其填充位置如下:
数据和数据纠错码
然后是填接我们的最终编码,最终编码的填充方式如下:从左下角开始沿着红线填我们的各个bits,1是黑色,0是白色。如果遇到了上面的非数据区,则绕开或跳过。
掩码图案
这样下来,我们的图就填好了,但是,也许那些点并不均衡,如果出现大面积的空白或黑块,会告诉我们扫描识别的困难。所以,我们还要做Masking操作(靠,还嫌不复杂)QR的Spec中说了,QR有8个Mask你可以使用,如下所示:其中,各个mask的公式在各个图下面。所谓mask,说白了,就是和上面生成的图做XOR操作。Mask只会和数据区进行XOR,不会影响功能区。(注:选择一个合适的Mask也是有算法的)
其Mask的标识码如下所示:(其中的i,j分别对应于上图的x,y)
下面是Mask后的一些样子,我们可以看到被某些Mask XOR了的数据变得比较零散了。
Mask过后的二维码就成最终的图了。
好了,大家可以去尝试去写一下QR的编码程序,当然,你可以用网上找个Reed Soloman的纠错算法的库,或是看看别人的源代码是怎么实现这个繁锁的编码。
C语言中,已知字节unsigned char数组,找出字节数组中连续相同的个字节,有什么好的算法吗?
给你写了一个,你看看,不懂就追问:#include<stdio.h>
int main()
{
unsigned char a[] = { 1,2,3,4,5,6,7,8,9,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,};
int i = 0;
int j = 1;
int k = 0;
for (i=0; i<; i++)
{
if (a[i] == a[i+1])
{
if (0==k)
{
k = i;// 记录起始位置
}
j++;
if (==j)
{
printf("从第%d位到第%d位相同,相同的值为:%d\n", k+1, i+2, a[i]);
system("pause");
return 0;
}
}
else
{
k=0;
j=1;
}
}
printf("未找到连续个相同的字节!\n");
system("pause");
return 0;
}
运行结果: