皮皮网
皮皮网

【转账制作源码】【打开跳转加群源码】【js源码在哪里看】cas 源码启动

来源:sui app源码 发表时间:2024-11-30 11:35:44

1.Spring Cloud + Spring Boot + Mybatis 码启+ Uniapp 企业架构之CAS SSO单点登录框架
2.Linux基础组件之无锁消息队列ypipe/yqueue详解
3.面试必问的CAS,你懂了吗?
4.画面设置cas是码启什么意思?
5.java并发原子类AtomicBoolean解析
6.从HotSpot源码,深度解读 park 和 unpark

cas 源码启动

Spring Cloud + Spring Boot + Mybatis 码启+ Uniapp 企业架构之CAS SSO单点登录框架

       了解单点登录(SSO)是一种在多个相关应用之间共享认证信息的机制。SSO主要特点在于使用统一的码启登录入口,通过Web协议(如HTTPS)实现应用之间的码启认证。单点登录体系包括用户、码启转账制作源码Web应用和SSO认证中心三个角色。码启SSO实现基于三个核心原则:所有登录操作在SSO认证中心执行;认证中心通过方法告知Web应用访问用户是码启否已通过认证;SSO认证中心与所有Web应用建立信任关系。

       CAS SSO单点登录体系由CAS Server和CAS Client组成。码启CAS Server负责用户信息认证,码启独立部署,码启处理凭证(Credentials)。码启CAS Client部署在客户端,码启当有对本地Web应用受保护资源的码启访问请求时,重定向到CAS Server进行认证。码启

       采用CAS SSO单点登录无需依赖Cookie实现跨域,优势明显。在不同站点间无需重新登录,即便站点域名不同。传统方案可能遇到Cookie跨域问题,解决复杂。CAS SSO单点登录的官方文档和源代码可直接访问:apereo.org/projects/cas。推荐下载稳定版本,如4.2.1,避免使用最新版本可能存在的不稳定情况。通过远程Maven库下载cas-server-webapp的war包,步骤包括访问Maven地址搜索并下载最新版本。下载cas-client-core的jar包,支持Spring MVC开发,适用于多种协议与开发语言。CAS架构图展示了其组件与工作流程,打开跳转加群源码根据项目需求选择合适的版本进行部署。

Linux基础组件之无锁消息队列ypipe/yqueue详解

       CAS定义

       比较并交换(compare and swap, CAS),在多线程编程中用于实现不被打断的数据交换,避免数据不一致问题。该操作通过比较内存值与指定数据,当数值相同则替换内存数据。

       为什么需要无锁队列

       锁引起的问题:cache损坏/失效、同步机制上的争抢、动态内存分配。

       有锁导致线程切换引发cache损坏

       大量线程切换导致cache数据失效,处理器与主存之间数据传输效率下降,影响性能。

       在同步机制上的争抢队列

       阻塞队列导致任务暂停或睡眠,大量时间浪费在获取互斥锁,而非处理数据,引发严重争用。

       动态内存分配

       多线程中动态分配内存导致互斥,线程频繁分配内存影响应用性能。

       无锁队列的实现

       无锁队列由ypipe_t和yqueue_t类构成,适用于一读一写场景。通过chunk模式批量分配结点,减少动态内存分配的互斥问题。批量分配大小根据业务场景调整,通常设置较大较为安全。利用spare_chunk存储未释放的chunk,降低频繁分配释放。预写机制减少CAS调用。巧妙的唤醒机制,读端等待无数据时进入等待状态,写端根据返回值判断队列是js源码在哪里看否为空以唤醒读端。

       无锁队列使用

       yqueue.write(count,false)用于写入元素并标记完成状态,yqueue.flush()使读端可见更新后数据。yqueue.read(&value)读取元素,返回true表示读到元素,返回false表示队列为空。

       ypipe_t使用

       write(val, false)更新写入位置,flush()刷新数据到管道,read()读取数据并更新可读位置。

       yqueue_t构造函数

       初始化队列,end_chunk总是指向最后分配的chunk,back_chunk仅在有元素插入时指向对应的chunk。

       front()和back()函数

       返回队列头和尾的可读写元素位置。

       push()和pop()函数

       push()更新写入位置,pop()更新读取位置并检测释放chunk,保持数据流。

       源码分析

       yqueue_t内部使用chunk批量分配,减少内存操作,spare_chunk存储释放的chunk以供再次使用。ypipe_t构建单写单读无锁队列,通过CAS操作控制读写位置,实现高效数据交换。

       ypipe_t / yqueue_t无锁队列利用chunk机制避免频繁内存动态分配,提升性能。通过局部性原理复用回收的chunk,减少资源消耗。flush()检测队列状态通知唤醒,优化数据交换过程。

面试必问的CAS,你懂了吗?

       CAS(Compare-and-Swap)是一种实现并发算法时常用的技术,Java并发包中的论坛网页源码整合多个类采用了CAS技术。面试中经常涉及这一概念,本文旨在深入解析CAS的原理。

       在介绍CAS之前,我们通过一个例子来理解其应用。这个例子在运行过程中可能会陷入死循环,通过检查线程状态,发现IDEA监控线程的介入导致了问题。解决这一死循环的方法是使用DEBUG模式运行程序或调整代码逻辑。

       通过volatile关键字的使用,我们可以观察到,其只能确保可见性,而不能保证原子性。在并发场景下,对于自增操作等非原子操作,volatile并不能保证正确结果。因此,解决这类问题的关键是引入原子操作。

       引入synchronized关键字是一种常见的解决方法,通过加锁实现原子操作,确保每次操作的正确性。然而,频繁使用synchronized会导致性能下降,因此引入Java并发包中的原子操作类(如AtomicInteger)成为了更优选择。

       AtomicInteger的`getAndIncrement()`方法即是CAS操作的实例,它通过一系列原子操作确保每次自增操作的正确性和性能。进一步分析,我们发现其底层实现调用了`compareAndSwapInt`方法,即CAS的核心实现。

       CAS(Compare-and-Swap)本质上是一个比较并替换操作,它需要三个操作数:内存地址、搬砖吧 源码哥旧的预期值和目标值。执行过程中,当内存地址的值与预期值相等时,CAS尝试将内存地址的值修改为目标值。若失败,则获取最新值,重新尝试,直至修改成功。

       深入到源码层面,可以看到`AtomicInteger`类中的`getAndIncrement()`方法最终调用了`compareAndSwapInt`方法,而`compareAndSwapInt`在Unsafe类中被实现。通过调用`Atomic::cmpxchg`方法,我们能够看到具体的汇编指令实现。

       `Atomic::cmpxchg`方法的实现依赖于系统是否为多处理器环境,以优化性能。它通过`LOCK_IF_MP`宏决定是否添加`lock`前缀,这一优化措施在单处理器环境下通常没有必要,但在多核处理器中能够提升性能。

       CAS操作的缺点包括循环时间长导致的开销大、仅支持单一共享变量的原子操作,以及ABA问题。ABA问题是由于CAS操作的特性导致,即在读取值后,值在后续操作中可能被改回原始值,从而产生误判。为解决ABA问题,Java并发包提供了带有版本控制的原子引用类`AtomicStampedReference`。

       在使用CAS操作时,需要考虑其对并发正确性的影响,尤其是ABA问题。如果并发场景中存在可能的ABA问题,传统互斥同步可能比原子类更高效。

       综上所述,理解CAS的原理和其在并发编程中的应用对于深入学习Java并发技术至关重要。掌握CAS操作的原理、优缺点及其解决方法,将有助于更高效、正确地处理并发问题。

画面设置cas是什么意思?

       CAS是Central Authentication Service的缩写,即集中式认证服务。它是一种用于Web应用程序的单点登录协议。CAS协议通过认证中心(服务器)来给多个服务提供认证服务,用户一次登录认证以后,便可以访问被授权的多个服务。CAS协议是一种开放源代码的协议,被广泛应用于大型企业和组织的身份认证系统中。

       CAS需要先部署一个认证服务器和多个应用程序服务器,然后在这些服务器之间建立信任关系。用户首次登录时,应该重定向到认证服务器,输入用户名和密码进行认证,并且一旦通过认证,用户将被重定向回要访问的应用程序服务器。以后的每次访问都无需再次认证。认证服务器和应用程序服务器之间使用安全令牌和Session来保障安全性。

       CAS的优点在于提供可靠的身份验证,减少了用户访问多个Web应用程序时的不必要的登录操作,避免了重复输入用户名和密码等问题。它广泛应用于大型企业和组织的身份认证系统中,例如教育机构、银行、保险公司、医院等。CAS的使用可以帮助企业或组织节省时间和成本,减少安全漏洞,提高用户体验并提高整个系统的安全性。

java并发原子类AtomicBoolean解析

       本文针对Java并发包下的原子类AtomicBoolean进行深入解析。在多线程环境中,传统的布尔变量`boolean`并非线程安全,容易导致数据竞争问题。为解决这一问题,引入了AtomicBoolean类,该类提供了一种线程安全的布尔值封装。

       使用`AtomicBoolean`的主要原因在于其提供的原子操作保证了多线程环境下的线程安全。在`AtomicBoolean`内部实现中,主要依赖于`compareAndSet`方法和CAS(Compare and Swap)机制。通过CAS操作,`AtomicBoolean`能够在多线程环境下实现原子的更新操作,有效避免了数据竞争和并发问题。

       在`AtomicBoolean`的源码中,`compareAndSet`方法使用了`Unsafe`类的`compareAndSwapInt`方法进行底层操作。CAS机制的核心思想是:在不进行锁操作的情况下,检查指定内存位置的预期值是否与当前值相等,若相等,则更新该位置的值为预期值;若不相等,则操作失败,返回原值。

       为了理解这一机制,我们可以通过一个简单例子进行说明。假设我们希望在多线程环境下实现一个“先来后到”的规则,例如:一个人完成起床、上班和下班三件事后,另一个人才能开始。在单线程下,这一逻辑自然无问题,但在多线程环境下,`AtomicBoolean`可以确保这一顺序得到实现。

       在实际应用中,`AtomicBoolean`类提供了丰富的原子操作方法,包括但不限于`compareAndSet`、`getAndSet`、`compareAndExchange`等。这些方法允许开发人员在多线程环境下安全地执行原子操作,简化了多线程编程的复杂性。

       总结而言,`AtomicBoolean`是一个在Java并发编程中非常实用的工具类,它通过原子操作保证了多线程环境下的线程安全。对于开发者而言,掌握`AtomicBoolean`的使用方法和原理,可以有效避免数据竞争问题,提升程序的并发性能和稳定性。

从HotSpot源码,深度解读 park 和 unpark

       我最近建立了一个在线自习室(App:番茄ToDO)用于相互监督学习,感兴趣的小伙伴可以加入。自习室加入码:D5A7A

       Java并发包下的类大多基于AQS(AbstractQueuedSynchronizer)框架实现,而AQS线程安全的实现依赖于两个关键类:Unsafe和LockSupport。

       其中,Unsafe主要提供CAS操作(关于CAS,在文章《读懂AtomicInteger源码(多线程专题)》中讲解过),LockSupport主要提供park/unpark操作。实际上,park/unpark操作的最终调用还是基于Unsafe类,因此Unsafe类才是核心。

       Unsafe类的实现是由native关键字说明的,这意味着这个方法是原生函数,是用C/C++语言实现的,并被编译成了DLL,由Java去调用。

       park函数的作用是将当前调用线程阻塞,而unpark函数则是唤醒指定线程。

       park是等待一个许可,unpark是为某线程提供一个许可。如果线程A调用park,除非另一个线程调用unpark(A)给A一个许可,否则线程A将阻塞在park操作上。每次调用一次park,需要有一个unpark来解锁。

       并且,unpark可以先于park调用,但不管unpark先调用多少次,都只提供一个许可,不可叠加。只需要一次park来消费掉unpark带来的许可,再次调用会阻塞。

       在Linux系统下,park和unpark是通过Posix线程库pthread中的mutex(互斥量)和condition(条件变量)来实现的。

       简单来说,mutex和condition保护了一个叫_counter的信号量。当park时,这个变量被设置为0,当unpark时,这个变量被设置为1。当_counter=0时线程阻塞,当_counter>0时直接设为0并返回。

       每个Java线程都有一个Parker实例,Parker类的部分源码如下:

       由源码可知,Parker类继承于PlatformParker,实际上是用Posix的mutex和condition来实现的。Parker类里的_counter字段,就是用来记录park和unpark是否需要阻塞的标识。

       具体的执行逻辑已经用注释标记在代码中,简要来说,就是检查_counter是不是大于0,如果是,则把_counter设置为0,返回。如果等于零,继续执行,阻塞等待。

       unpark直接设置_counter为1,再unlock mutex返回。如果_counter之前的值是0,则还要调用pthread_cond_signal唤醒在park中等待的线程。源码如下:

       (如果不会下载JVM源码可以后台回复“jdk”,获得下载压缩包)

相关栏目:百科