【dp视频解析源码】【爱心募捐网站源码】【夏天的风源码】源码内核源码

来源:企业黄页 源码

1.如何从官网获取各个版本Linux内核的源码源码源码
2.如何有效的阅读linux内核源码?
3.Linux内核源码解析---万字解析从设计模式推演per-cpu实现原理
4.linux内核源码:内存管理——内存分配和释放关键函数分析&ZGC垃圾回收
5.linux内核源码:文件系统——可执行文件的加载和执行
6.linux内核源码目录在哪linux内核源码

源码内核源码

如何从官网获取各个版本Linux内核的源码

       访问网址 目录里是核心的网络部分代码,其每个子目录对应于网络的内核一个方面。

       .lib目录包含了核心的源码源码库代码,不过与处理器结构相关的内核库代码被放在arch/*/lib/目录下。

       .scripts目录包含用于配置核心的源码源码脚本文件。

       .documentation目录下是内核dp视频解析源码一些文档,是源码源码对每个目录作用的具体说明。

       一般在每个目录下都有一个.depend文件和一个Makefile文件。内核这两个文件都是源码源码编译时使用的辅助文件。仔细阅读这两个文件对弄清各个文件之间的内核联系和依托关系很有帮助。另外有的源码源码目录下还有Readme文件,它是内核对该目录下文件的一些说明,同样有利于对内核源码的源码源码理解。

       在阅读方法或顺序上,内核有纵向与横向之分。源码源码所谓纵向就是顺着程序的执行顺序逐步进行;所谓横向,就是按模块进行。它们经常结合在一起进行。对于Linux启动的代码可顺着Linux的启动顺序一步步来阅读;对于像内存管理部分,可以单独拿出来进行阅读分析。实际上这是爱心募捐网站源码一个反复的过程,不可能读一遍就理解。

剖析Linux内核源码解读之《配置与编译》

       Linux内核的配置与编译过程详解如下:

       配置阶段

       首先,从kernel.org获取内核源代码,如在Ubuntu中,可通过`sudo apt-get source linux-$(uname -r)`获取到,源码存放在`/usr/src/`。配置时,主要依据`arch//configs/`目录下的默认配置文件,使用`cp`命令覆盖`/boot/config`文件。配置命令有多种,如通过`.config`文件进行手动修改,但推荐在编译前进行系统配置。配置时注意保存配置,例如使用`/proc/config.gz`,以备后续需要。

       编译阶段

       内核编译涉及多种镜像类型,如针对ARM的交叉编译,常用命令是特定的。编译过程中,可能会遇到错误,夏天的风源码需要针对具体问题进行解决。编译完成后,将模块和firmware(体系无关)分别存入指定文件夹,记得为某些硬件添加对应的firmware文件到`lib/firmware`目录。

       其他内容

       理解vmlinux、vmlinuz(zImage, bzImage, uImage)之间的关系至关重要。vmlinuz是压缩后的内核镜像,zImage和bzImage是vmlinuz的压缩版本,其中zImage在内存低端解压,而bzImage在高端解压。uImage是uBoot专用的,是在zImage基础上加上特定头信息的版本。

Linux内核源码分析:Linux内核版本号和源码目录结构

       Linux内核版本和源码目录结构对于理解其内部设计至关重要。内核分为稳定版和开发版,版本号由主版本、次版本和修订版本组成,次版本号用于区分两者。内核代码分散在庞大的源码中,组织在个C文件和若干个特定目录下。

       Linux源码的金融借贷java源码根目录下,首先是arch目录,负责屏蔽不同体系结构间的差异,如虚拟地址翻译函数switch_mm。block目录存放通用的块设备驱动程序,如硬盘和U盘的读写操作。驱动程序通常在drivers目录,但块设备驱动被独立出来,因为它们的读写逻辑通用。certs目录用于存储认证和签名相关的代码,保障系统安全。

       内核模块是Linux 2.2版本后引入的概念,以.so文件形式独立,根据需要动态加载,带来灵活性但也增加了安全风险。crypto目录包含加密和压缩算法,保障数据安全。Documentation目录提供内核模块的文档和规范,drivers目录存放硬件驱动,fs目录处理文件系统,init目录负责内核初始化,打赏礼物源码ipc目录负责进程间通信,kernel目录包含核心功能代码,lib目录是内核的库函数集,mm目录负责内存管理,net目录处理网络协议,samples目录包含示例代码,scripts目录是编译和调试工具,security目录负责安全机制,sound目录负责音频处理,tools目录包含开发工具,usr目录是用户打包,virt目录关注虚拟化,LICENSE目录则记录了许可证信息。

       除了目录,源码中还有COPYING(版权声明)、CREDIT(贡献者名单)、Kbuild(构建配置)、MAINTAINERS(维护者信息)、Makefile(编译指令)和README(基本信息)等文件,它们分别提供了内核使用、贡献者认可、构建指导和基本介绍。这些组织结构使得Linux内核源码易于理解和维护。

剖析Linux内核源码解读之《实现fork研究(一)》

       Linux内核源码解析:深入探讨fork函数的实现机制(一)

       首先,我们关注的焦点是fork函数,它是Linux系统创建新进程的核心手段。本文将深入剖析从用户空间应用程序调用glibc库,直至内核层面的具体过程。这里假设硬件平台为ARM,使用Linux内核3..3和glibc库2.版本。这些版本的库和内核代码可以从ftp.gnu.org获取。

       在glibc层面,针对不同CPU架构,进入内核的步骤有所不同。当glibc准备调用kernel时,它会将参数放入寄存器,通过软中断(SWI) 0x0指令进入保护模式,最终转至系统调用表。在arm平台上,系统调用表的结构如下:

       系统调用表中的CALL(sys_clone)宏被展开后,会将sys_clone函数的地址放入pc寄存器,这个函数实际由SYSCALL_DEFINEx定义。在do_fork函数中,关键步骤包括了对父进程和子进程的跟踪,以及对子进程进行初始化,包括内存分配和vfork处理等。

       总的来说,调用流程是这样的:应用程序通过软中断触发内核处理,通过系统调用表选择并执行sys_clone,然后调用do_fork函数进行具体的进程创建操作。do_fork后续会涉及到copy_process函数,这个函数是理解fork核心逻辑的重要入口,包含了丰富的内核知识。在后续的内容中,我将深入剖析copy_process函数的工作原理。

简单概括Linux内核源码高速缓存原理(图例解析)

       高速缓存(cache)概念和原理涉及在处理器附近增加一个小容量快速存储器(cache),基于SRAM,由硬件自动管理。其基本思想为将频繁访问的数据块存储在cache中,CPU首先在cache中查找想访问的数据,而不是直接访问主存,以期数据存放在cache中。

       Cache的基本概念包括块(block),CPU从内存中读取数据到Cache的时候是以块(CPU Line)为单位进行的,这一块块的数据被称为CPU Line,是CPU从内存读取数据到Cache的单位。

       在访问某个不在cache中的block b时,从内存中取出block b并将block b放置在cache中。放置策略决定block b将被放置在哪里,而替换策略则决定哪个block将被替换。

       Cache层次结构中,Intel Core i7提供一个例子。cache包含dCache(数据缓存)和iCache(指令缓存),解决关键问题包括判断数据在cache中的位置,数据查找(Data Identification),地址映射(Address Mapping),替换策略(Placement Policy),以及保证cache与memory一致性的问题,即写入策略(Write Policy)。

       主存与Cache的地址映射通过某种方法或规则将主存块定位到cache。映射方法包括直接(mapped)、全相联(fully-associated)、一对多映射等。直接映射优点是地址变换速度快,一对一映射,替换算法简单,但缺点是容易冲突,cache利用率低,命中率低。全相联映射的优点是提高命中率,缺点是硬件开销增加,相应替换算法复杂。组相联映射是一种特例,优点是提高cache利用率,缺点是替换算法复杂。

       cache的容量决定了映射方式的选取。小容量cache采用组相联或全相联映射,大容量cache采用直接映射方式,查找速度快,但命中率相对较低。cache的访问速度取决于映射方式,要求高的场合采用直接映射,要求低的场合采用组相联或全相联映射。

       Cache伪共享问题发生在多核心CPU中,两个不同线程同时访问和修改同一cache line中的不同变量时,会导致cache失效。解决伪共享的方法是避免数据正好位于同一cache line,或者使用特定宏定义如__cacheline_aligned_in_smp。Java并发框架Disruptor通过字节填充+继承的方式,避免伪共享,RingBuffer类中的RingBufferPad类和RingBufferFields类设计确保了cache line的连续性和稳定性,从而避免了伪共享问题。

文章所属分类:热点频道,点击进入>>