1.【JDK源码分析】Timer/TimerTask 源码分析
2.Envoy源码分析之Dispatcher
3.OpenHarmony—内核对象事件之源码详解
4.技术人生阅读源码——Quartz源码分析之任务的任务任务调度和执行
5.Java原理系列ScheduledThreadPoolExecutor原理用法示例源码详解
6.Nacos源码之配置管理 三TaskManager 任务管理的使用
【JDK源码分析】Timer/TimerTask 源码分析
在Java中,Timer 类是源码源码实现定时任务的常见工具,配合TimerTask 实现定时、大全延迟或周期性执行。任务任务本文将深入剖析其源码结构和工作原理。源码源码 Timer 的大全vnp程序源码核心机制涉及关键类,包括TimerThread、任务任务Timer、源码源码TimerQueue 和 TimerTask。大全一个Timer 实例对应一个TimerThread,任务任务负责执行任务;Timer拥有一个TimerThread和一个TimerQueue,源码源码而TimerQueue中存储了多个TimerTask。大全这样的任务任务关系可以总结为:1个 TimerThread -> 1个线程
1个 Timer -> 持有 TimerThread 和 TimerQueue
1个 TimerQueue -> 持有多个 TimerTask
源码分析时,首先创建Timer时,源码源码thread和queue会在声明时初始化为final类型,大全确保它们与Timer的生命周期绑定。接着,任务通过schedule方法进行调度,这个过程会根据TimerTask类型设置不同的period参数。 TimerTask 是一个实现了Runnable接口的抽象类,子类需实现run方法。TimerTask的类型决定了其执行周期。TimerThread的run方法包含一个死循环,类似Android的Handler机制。 TimerQueue作为队列,内部使用完全二叉树结构,add和fixUp方法用于维护最小执行时间的节点在队列前端。purge方法执行后,会调用fixDown方法进行调整。 总之,每个Timer实例由一个线程和一个二叉堆(通过TimerQueue实现)组成,magnolia 源码用于管理定时任务的执行顺序。理解这些核心组件的交互,有助于深入理解Timer的工作机制。Envoy源码分析之Dispatcher
Dispatcher在Envoy中扮演着核心角色,是EventLoop的实现,负责任务队列、网络事件处理、定时器与信号处理等关键功能。其设计与Libevent库紧密集成,并通过封装与抽象,简化了内存管理。Dispatcher通过EventLoop提供了非阻塞的事件循环机制,支持多种事件类型,如FileEvent、SignalEvent、Timer等,通过继承unique_ptr来管理Libevent的C结构,利用RAII机制自动处理内存。SignalEvent通过初始化与添加事件使事件处于未决状态。Timer事件通过初始化与添加到Dispatcher中实现超时触发机制,确保在超时时执行。Envoy通过封装Libevent的事件类型,实现事件的抽象与统一处理。FileEvent封装了socket套接字相关的事件,支持主动触发与事件类型的设置。Dispatcher内部的任务队列用于调度与处理回调任务,通过post方法投递任务至队列,并通过循环运行这些任务。Envoy还引入了DeferredDeletable接口,允许对象在特定时间点被安全地析构,view源码避免回调时对象已析构导致的野指针问题,同时确保析构操作在Dispatcher生命周期内完成,避免内存泄漏与程序崩溃。通过实现延迟析构机制,Envoy能够在回调执行前确保对象已正确析构,保障了程序的稳定性和安全性。这一设计与任务队列的实现类似,但在对象析构逻辑上有所不同,更专注于解决多线程环境下对象生命周期管理的复杂性。
OpenHarmony—内核对象事件之源码详解
对于嵌入式开发和技术爱好者,深入理解OpenHarmony的内核对象事件源码是提升技能的关键。本文将通过数据结构解析,揭示事件机制的核心原理,引导大家探究任务间IPC的内在逻辑。
关键数据结构
首先,了解PEVENT_CB_S数据结构,它是事件的核心:uwEventID标识任务的事件类型,个位(保留位)可区分种事件;stEventList双向循环链表是理解事件的核心,任务等待事件时会挂载到链表,事件触发后则从链表中移除。
事件初始化
事件控制块由任务自行创建,通过LOS_EventInit初始化,此时链表为空,表示没有事件发生。任务通过创建eventCB指针并初始化,开始事件管理。
事件写操作
任务通过LOS_EventWrite写入事件,可以一次设置多个事件。1处的逻辑允许一次写入多个事件。2-3处检查事件链表,lottie 源码唤醒等待任务,通过双向链表结构确保任务顺序执行。
事件读操作
轻量级操作系统提供了两种事件读取方式:LOS_EventPoll支持主动检查,而LOS_EventRead则为阻塞读。1处区分两种读取模式,2-4处根据模式决定任务挂起或直接读取。
事件销毁操作
事件使用完毕后,需通过LOS_EventClear清除事件标志,并在LOS_EventDestroy中清理事件链表,确保资源的正确释放。
总结
通过以上的详细分析,OpenHarmony的内核事件机制已清晰可见。掌握这些原理,开发者可以更自如地利用事件API进行任务同步,并根据需要自定义事件通知机制,提升任务间通信的灵活性。
技术人生阅读源码——Quartz源码分析之任务的调度和执行
Quartz源码分析:任务调度与执行剖析
Quartz的调度器实例化时启动了调度线程QuartzSchedulerThread,它负责触发到达指定时间的任务。该线程通过`run`方法实现调度流程,包含三个主要阶段:获取到达触发时间的triggers、触发triggers、执行triggers对应的jobs。
获取到达触发时间的triggers阶段,通过`JobStore`接口的`acquireNextTriggers`方法获取,由`RAMJobStore`实现具体逻辑。触发triggers阶段,调用`triggersFired`方法通知`JobStore`触发triggers,处理包括更新trigger状态与保存触发过程相关数据等操作。执行triggers对应jobs阶段,真正执行job任务,zaker源码先构造job执行环境,然后在子线程中执行job。
job执行环境通过`JobRunShell`提供,确保安全执行job,捕获异常,并在任务完成后根据`completion code`更新trigger。job执行环境包含job对象、trigger对象、触发时间、上一次触发时间与下一次触发时间等数据。Quartz通过线程池提供多线程服务,使用`SimpleThreadPool`实例化`WorkerThread`来执行job任务,最终调用`Job`的`execute`方法实现业务逻辑。
综上所述,Quartz通过精心设计的线程调度与执行流程,确保了任务的高效与稳定执行,展示了其强大的任务管理能力。
Java原理系列ScheduledThreadPoolExecutor原理用法示例源码详解
ScheduledThreadPoolExecutor是Java中实现定时任务与周期性执行任务的高效工具。它继承自ThreadPoolExecutor类,能够提供比常规Timer类更强大的灵活性与功能,特别是在需要多个工作线程或有特殊调度需求的场景下。
该类主要功能包含但不限于提交在指定延迟后执行的任务,以及按照固定间隔周期执行的任务。它实现了ScheduledExecutorService接口,进而提供了丰富的API以实现任务的调度与管理。其中包括now()、getDelay()、compareTo()等方法,帮助开发者更精确地处理任务调度与延迟。
在实际应用中,ScheduledThreadPoolExecutor的使用案例广泛。比如,初始化一个ScheduledThreadPoolExecutor实例,设置核心线程数,从而为定时任务提供资源保障。提交延迟任务,例如在5秒后执行特定操作,并输出相关信息。此外,提交周期性任务,如每隔2秒执行一次特定操作,用于实时监控或数据更新。最后,通过调用shutdown()与shutdownNow()方法来关闭执行器并等待所有任务完成,确保系统资源的合理释放与任务的有序结束。
总的来说,ScheduledThreadPoolExecutor在处理需要精确时间控制的任务时展现出了强大的功能与灵活性,是Java开发者在实现定时与周期性任务时的首选工具。
Nacos源码之配置管理 三TaskManager 任务管理的使用
在Nacos的源码中,TaskManager是一个核心组件,它负责管理一系列必须成功执行的任务,以单线程的方式确保任务的执行。TaskManager内部包含待处理的AbstractTask集合和对应的TaskProcessor,后者是执行任务的接口,不同的任务类型需实现自己的执行逻辑。以配置中心的配置文件Dump为例,Nacos会定期将数据库中的数据备份到磁盘,这个操作通过定义的DumpTask和其对应的DumpProcessor来实现。
DumpTask定义了必要的属性,而DumpProcessor则是专门处理DumpTask的任务处理器,其核心功能是将配置文件保存到磁盘并计算MD5。类似地,DumpAllTask和DumpAllBetaTask也有对应的处理器,如DumpAllProcessor和DumpAllBetaProcessor。
DumpAllTask的任务触发和执行发生在DumpService类中,该服务负责初始化配置信息的备份。在初始化时,会创建一个DumpAllProcessor执行器,并启动一个线程,将默认执行器设置为这个处理器。此后,每隔十分钟,DumpService会向TaskManager添加一个新的DumpAllTask,由线程processingThread处理并执行。
Ray 源码解析(一):任务的状态转移和组织形式
Ray源码解析系列的第一篇着重于任务的状态管理和组织形式。Ray的核心设计在于其细粒度、高吞吐的任务调度,依赖于共享内存的Plasma存储输入和输出,以及Redis的GCS来管理所有状态,实现去中心化的调度。任务分为无状态的Task和有状态的Actor Method,后者包括Actor的构造函数和成员函数。
Ray支持显式指定任务的资源约束,通过ResourcesSet量化节点资源,用于分配和回收。在调度时,需找到满足任务资源要求的节点。由于Task输入在分布式存储中,调度后需要传输依赖。对于Actor Method,其与Actor绑定,会直接调度到对应的节点。
状态变化如任务状态转移、资源依赖等信息,都存储在GCS中。任务状态更改需更新GCS,失联或宕机时,根据GCS中的状态信息重试任务。通过GCS事件订阅驱动任务状态变化。
文章主要讲述了任务状态的组织方式,如任务队列(TaskQueue)和调度队列(SchedulingQueue)的运作,以及状态转移图和状态枚举类的定义。例如,TaskQueue负责任务的增删查改,其中ReadyQueue通过资源映射优化调度决策。此外,文中还解释了一些关键概念,如Task Required Resources、Task argument、Object、Object Store、Node/Machine等。
后续文章将深入探讨调度策略和资源管理。让我们期待下篇的精彩内容。
如何实现定时任务- Java Timer/TimerTask 源码解析
日常实现各种服务端系统时,我们一定会有一些定时任务的需求。比如会议提前半小时自动提醒,异步任务定时/周期执行等。那么如何去实现这样的一个定时任务系统呢? Java JDK提供的Timer类就是一个很好的工具,通过简单的API调用,我们就可以实现定时任务。
现在就来看一下java.util.Timer是如何实现这样的定时功能的。
首先,我们来看一下一个使用demo
基本的使用方法:
加入任务的API如下:
可以看到API方法内部都是调用sched方法,其中time参数下一次任务执行时间点,是通过计算得到。period参数为0的话则表示为一次性任务。
那么我们来看一下Timer内部是如何实现调度的。
内部结构
先看一下Timer的组成部分:
Timer有3个重要的模块,分别是 TimerTask, TaskQueue, TimerThread
那么,在加入任务之后,整个Timer是怎么样运行的呢?可以看下面的示意图:
图中所示是简化的逻辑,多个任务加入到TaskQueue中,会自动排序,队首任务一定是当前执行时间最早的任务。TimerThread会有一个一直执行的循环,从TaskQueue取队首任务,判断当前时间是否已经到了任务执行时间点,如果是则执行任务。
工作线程
流程中加了一些锁,用来避免同时加入TimerTask的并发问题。可以看到sched方法的逻辑比较简单,task赋值之后入队,队列会自动按照nextExecutionTime排序(升序,排序的实现原理后面会提到)。
从mainLoop的源码中可以看出,基本的流程如下所示
当发现是周期任务时,会计算下一次任务执行的时间,这个时候有两种计算方式,即前面API中的
优先队列
当从队列中移除任务,或者是修改任务执行时间之后,队列会自动排序。始终保持执行时间最早的任务在队首。 那么这是如何实现的呢?
看一下TaskQueue的源码就清楚了
可以看到其实TaskQueue内部就是基于数组实现了一个最小堆 (balanced binary heap), 堆中元素根据 执行时间nextExecutionTime排序,执行时间最早的任务始终会排在堆顶。这样工作线程每次检查的任务就是当前最早需要执行的任务。堆的初始大小为,有简单的倍增扩容机制。
TimerTask 任务有四种状态:
Timer 还提供了cancel和purge方法
常见应用
Java的Timer广泛被用于实现异步任务系统,在一些开源项目中也很常见, 例如消息队列RocketMQ的 延时消息/消费重试 中的异步逻辑。
上面这段代码是RocketMQ的延时消息投递任务 ScheduleMessageService 的核心逻辑,就是使用了Timer实现的异步定时任务。
不管是实现简单的异步逻辑,还是构建复杂的任务系统,Java的Timer确实是一个方便实用,而且又稳定的工具类。从Timer的实现原理,我们也可以窥见定时系统的一个基础实现:线程循环 + 优先队列。这对于我们自己去设计相关的系统,也会有一定的启发。