1.paddleocr—— win下环境搭建安装使用
2.搭建自己的OCR服务,第二步:PaddleOCR环境安装
3.基于PaddleNLP搭建评论观点抽取和属性级情感分析系统
4.paddle掌握(一)paddle安装和入门
5.链桨PaddleDTX系列 - xdb源码分析(一)
6.paddlehub介绍
paddleocr—— win下环境搭建安装使用
PaddleOCR是一个基于飞桨开发的OCR系统,包含了文字检测、文字识别、文本方向检测和图像处理等模块。为了在Windows环境下搭建PaddleOCR,防显示模板源码首先需要准备Python环境。推荐使用Anaconda搭建Python环境,它可以帮助用户管理多个Python环境。安装Anaconda后,可以通过创建新的conda环境来安装所需的工具包,例如安装python版本为3.的环境,确保pip版本为.2.2或更高版本。另一种方式是直接安装Python,下载Python并选择最新版本的上一版本进行安装,记得在安装过程中勾选“Add Python To Path”。安装完成后,使用Anaconda Prompt创建conda环境,执行特定的命令来创建名为paddle_env的环境。
在完成Python环境的搭建后,需要安装PaddlePaddle和PaddleOCR。对于PaddlePaddle的安装,可以使用pip进行安装,确保安装的是适合当前Python环境的版本。安装完成后,通过Python环境运行测试命令,验证PaddlePaddle是否安装成功。对于PaddleOCR,推荐使用版本2.6.0或以上,安装前可能需要先解决shapely库在Windows环境下的安装问题,通常可以通过下载shapely安装包来解决。人才外包源码下载
安装完成后,可以通过执行特定的命令来验证PaddleOCR的安装。在终端中打开Python环境,输入相关命令,如果返回“PaddlePaddle is installed successfully!”,则表示安装成功。如果在安装过程中遇到问题,例如无法找到特定模块,可以尝试卸载所有相关包,然后重新安装特定版本的OpenCV。
在安装了PaddleOCR后,可以使用标注工具PPOCRLabel进行的标注工作。获取PPOCRLabel的源代码,通常可以通过访问GitHub仓库或下载源代码包。在安装PPOCRLabel时,可以使用whl包进行安装,这通常包括依赖库的安装,如shapely。安装后,PPOCRLabel会弹出窗口,允许用户对进行标注。在使用过程中,可能会遇到一些小问题,如输入法问题或标注闪退,可以通过修改相关文件来解决,或者采取一些临时措施,如保存标注内容并重启程序。
总体来说,为了成功安装和运行PaddleOCR及其相关标注工具,用户需要遵循一系列步骤来搭建Python环境,qt源码分析qtimer安装所需的库,验证安装,并最终使用标注工具进行实际工作。在遇到问题时,通过调整环境配置或更新依赖库可能有助于解决这些问题。
搭建自己的OCR服务,第二步:PaddleOCR环境安装
搭建自己的OCR服务需要安装PaddleOCR环境。在安装过程中,可能会遇到一些问题,特别是在系统配置方面。我将分享在搭建过程中遇到的问题以及解决方法。首先,安装C++开发环境。由于大多数非专业开发人员可能忽略了C++开发环境的需要,导致后续安装步骤出现错误。因此,需要从微软官网下载并安装Visual Studio社区版,选择适用于c++应用的版本。
接下来,按照PaddleOCR官网提供的步骤进行安装。进入百度飞浆官网安装地址,选择相应的版本、系统、安装方式和计算机平台。执行安装CPU版本的paddlepaddle命令。在pip安装过程中,会自动下载依赖库,包括lanms-neo和polygon3。若未安装C++环境,可能会导致安装失败。水下桩指标源码
安装完成后,使用python解释器验证安装情况。输入`import paddle`和`paddle.utils.run_check()`以确保安装成功,并检测到计算机的CPU数量。同时,可以参考gitee上的安装教程,以确保安装过程无误。
接下来,使用OCR识别。首先运行识别程序,自动下载超轻量PP-OCRv3模型,包括检测模型、方向分类器和识别模型。如果需要,可以主动下载或从百度飞浆官网获取预训练模型。通过python脚本进行测试,确保OCR功能正常运行。
对于识别率不高的问题,可以进行后续的模型训练和优化。如果选择使用官网预训练模型,可以简化后续操作。接下来,下载PaddleOCR源码。从GitHub或Gitee获取源码,以便深入学习和研究。源码目录结构有助于理解PaddleOCR的内部实现,其中`requirements.txt`文件记录了安装过程中下载的依赖库。
至此,PaddleOCR的基本安装完成。若需要学习或研究,苹果商城网页源码下载源码进行深度了解是很有帮助的。整个过程确保了环境的正确配置,为后续的OCR服务搭建奠定了基础。
基于PaddleNLP搭建评论观点抽取和属性级情感分析系统
基于PaddleNLP搭建评论观点抽取和属性级情感分析系统旨在实现对带有情感色彩的主观性文本进行深入分析与处理,广泛应用于消费决策、舆情分析、个性化推荐等领域。百度工程师将带来直播讲解,深入解读情感分析等系统方案,并带来手把手项目实战,详情请点击课程直通车。本项目源代码全部开源在PaddleNLP中。
情感分析任务包括语句级情感分析、评论对象抽取和观点抽取。其中,语句级别的情感分析在宏观上分析整句话的感情色彩,粒度较粗。而属性级别的情感分析则针对某一产品或服务的多个属性进行评论,能提供更具体、细致的分析结果。例如,关于薯片的评论“这个薯片味道真的太好了,口感很脆,只是包装很一般。”可以看出,顾客在味道和口感两个方面给出了好评,但在包装上给出了负面评价。这种细粒度的分析,对于商家改进产品或服务具有重要意义。
项目提出细粒度的情感分析能力,首先进行评论观点抽取,然后分析不同观点的情感极性。评论观点抽取采用序列标注方式,利用BIO的序列标注体系拓展标签,包括B-Aspect、I-Aspect、B-Opinion、I-Opinion和O。在抽取评论观点后,对评论属性和观点进行拼接,并与原文拼接作为独立训练语句,最终传入SKEP模型进行细粒度情感倾向分析。
评论观点抽取模型通过序列标注完成,训练、评估和测试数据集包含标签词典,数据集格式包含文本串和序列标签。数据加载、转换成特征形式,构造DataLoader后,基于SKEP模型实现评论观点抽取功能,进行文本数据输入和向量序列产生,基于CLS位置的输出向量进行情感分析。训练配置包括环境配置、模型参数定义等。
属性级情感分类模型同样基于SKEP模型实现,将处理好的文本数据输入SKEP模型进行编码,使用CLS位置对应的输出向量进行情感分类。训练配置、训练与测试定义完成后,模型训练与测试进行评估,模型效果最好的模型将被保存。在完成模型训练与测试后,可以使用全量数据训练好的评论观点抽取模型和属性级情感分类模型进行全流程情感分析预测。
基于PaddleNLP开源的PP-MiniLM实现属性级情感分类模型,利用模型蒸馏技术蒸馏出6层小模型,效果好、运行速度快。PP-MiniLM数据集在7项CLUE任务上的平均值表现良好。模型量化操作后,与SKEP-Large、PP-MiniLM进行性能和效果对比,展现出显著的性能提升。
加入PaddleNLP的QQ技术交流群,一起学习NLP技术,获得更多关于情感分析的信息。
paddle掌握(一)paddle安装和入门
首先,我们从安装PaddlePaddle开始。官方推荐有深度学习开发经验且注重源代码和安全性的开发者使用,确保你的本地环境已安装CUDA和Anaconda。为了安装CUDA,你需要:1. 下载CUDA .7,可以从CUDA Toolkit Archive获取。
2. 打开命令窗口,通过win+R运行管理器,输入`cmd`。
3. 通过命令行查看CUDA版本。
安装PaddlePaddle后,我们来实现一个经典的深度学习入门项目——MNIST手写字符识别,这就像软件开发的“hello world”项目。LeNet模型将用于对MNIST数据集进行图像分类。MNIST数据集包含,个训练样本和,个测试样本,数据预处理已标准化,每张是x像素,值在0到1之间。获取数据集地址:yann.lecun.com/exdb/mnist。 利用PaddlePaddle的`paddle.vision.datasets.MNIST`,我们可以加载数据并查看训练集中的一条数据,如`train_data0`的标签为[5]。 接着,我们构建LeNet模型,使用`paddle.nn`中的函数如`Conv2D`、`MaxPool2D`和`Linear`。以下是模型构建的输出。 模型训练和预测可以通过高层API实现,如`Model.fit`进行训练,`Model.evaluate`进行预测。基础API下,你需要构建训练数据加载器,定义训练函数,设置损失函数,按批处理数据,进行训练,并在训练后用测试数据验证模型效果。链桨PaddleDTX系列 - xdb源码分析(一)
本文基于链桨开源master分支,分析xdb模块代码。最新commit为4eee7caeebc0febdc。
xdb是基于区块链的去中心化存储系统,它实现了文件存储、文件摘要上链、副本保持证明、健康状态监控、文件迁移等功能。在代码结构上,主要包含以下部分:
blockchain模块:此模块负责实现xdb与区块链网络的交互。目前,xdb支持的区块链网络包括Xuperchain(xchain)和Fabric。以Xuperchain为例,xchain模块中的xchain.go文件包含了初始化xchain客户端的相关功能。
client模块:作为xdb的客户端工具,client模块使得用户可以通过与xdb server进行交互来实现文件操作。具体实现细节在client/(pretrained=True)
model.eval()
withpaddle.no_grad():
logits=model(img)
probs=paddle.nn.functional.softmax(logits,axis=1)
pred=paddle.argmax(probs,axis=1).numpy()[0]
```
使用PaddleClas(2.5)进行分类
在进行图像分类任务时,我选择使用PPLCNetV2_base模型。首先,确保已安装CUDA和CUDNN,这在分类过程中至关重要。我尝试安装CUDA.7.0,但遇到问题,预测结果不理想。实际上,使用CPU同样能实现分类,无需过度依赖GPU。若出现预测准确率低的问题,考虑卸载并重新安装,或寻找其他版本的CUDA和CUDNN。
安装CUDA和CUDNN的官方资源提供了必要的版本选择。我选择CUDA.7.0,并通过自定义安装方式排除不必要的组件。同时,确保解压cuDNN的压缩包至CUDA安装路径C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v.7下,以完成环境配置。
使用pip安装paddlepaddle-gpu==2.4.2,并从PaddlePaddle/PaddleClas仓库下载源码,以获取适用于图像分类的工具。为确保依赖项最新,执行pip install --upgrade -r requirements.txt命令。随后,运行PaddleClas模型并观察结果。
为了将模型导出为ONNX格式,可以使用Paddle2ONNX模块,获取详细教程和案例有助于理解操作流程。此步骤有助于模型在其他平台或框架中实现推理。通过ONNXruntime进行推理,观察实际表现。注意,图像处理方式可能影响概率输出,我遇到的情况是因为转换方法不够精细,导致概率值有所不同。
总结而言,使用PPLCNetV2_base模型进行分类时,正确安装CUDA和CUDNN、配置环境变量是关键。尽管遇到GPU运行问题,考虑使用CPU作为替代方案。通过ONNX格式转换与ONNXruntime的结合,可以实现跨平台的推理任务。若遇到特定问题,寻找兼容CUDA和CUDNN的版本或寻求社区支持将有助于解决问题。