皮皮网
皮皮网

【rocsdb 源码分析】【小小指标源码】【delphi 皮肤控件源码】atrace 源码

来源:聊天室PHP源码 发表时间:2024-11-27 04:55:32

1.Debug版本和Release版本有什么区别?
2.tracert工作原理&路由原理

atrace 源码

Debug版本和Release版本有什么区别?

       一、源码Debug 和 Release 编译方式的源码本质区别

        Debug 通常称为调试版本,它包含调试信息,源码并且不作任何优化,源码便于程序员调试程序。源码Release 称为发布版本,源码rocsdb 源码分析它往往是源码进行了各种优化,使得程序在代码大小和运行速度上都是源码最优的,以便用户很好地使用。源码

        Debug 和 Release 的源码真正秘密,在于一组编译选项。源码下面列出了分别针对二者的源码选项(当然除此之外还有其他一些,如/Fd /Fo,源码但区别并不重要,源码通常他们也不会引起 Release 版错误,源码在此不讨论)

        Debug 版本:

        /MDd /MLd 或 /MTd 使用 Debug runtime library(调试版本的运行时刻函数库)

        /Od 关闭优化开关

        /D "_DEBUG" 相当于 #define _DEBUG,打开编译调试代码开关(主要针对

        assert函数)

        /ZI 创建 Edit and continue(编辑继续)数据库,这样在调试过

        程中如果修改了源代码不需重新编译

        /GZ 可以帮助捕获内存错误

        /Gm 打开最小化重链接开关,减少链接时间

        Release 版本:

        /MD /ML 或 /MT 使用发布版本的运行时刻函数库

        /O1 或 /O2 优化开关,使程序最小或最快

        /D "NDEBUG" 关闭条件编译调试代码开关(即不编译assert函数)

        /GF 合并重复的字符串,并将字符串常量放到只读内存,防止

        被修改

        实际上,Debug 和 Release 并没有本质的界限,他们只是一组编译选项的集合,编译器只是按照预定的选项行动。事实上,我们甚至可以修改这些选项,从而得到优化过的调试版本或是带跟踪语句的发布版本。

        二、哪些情况下 Release 版会出错

        有了上面的介绍,我们再来逐个对照这些选项看看 Release 版错误是小小指标源码怎样产生的

        1. Runtime Library:链接哪种运行时刻函数库通常只对程序的性能产生影响。调试版本的 Runtime Library 包含了调试信息,并采用了一些保护机制以帮助发现错误,因此性能不如发布版本。编译器提供的 Runtime Library 通常很稳定,不会造成 Release 版错误;倒是由于 Debug 的 Runtime Library 加强了对错误的检测,如堆内存分配,有时会出现 Debug 有错但 Release 正常的现象。应当指出的是,如果 Debug 有错,即使 Release 正常,程序肯定是有 Bug 的,只不过可能是 Release 版的某次运行没有表现出来而已。

        2. 优化:这是造成错误的主要原因,因为关闭优化时源程序基本上是直接翻译的,而打开优化后编译器会作出一系列假设。这类错误主要有以下几种:

        (1) 帧指针(Frame Pointer)省略(简称 FPO ):在函数调用过程中,所有调用信息(返回地址、参数)以及自动变量都是放在栈中的。若函数的声明与实现不同(参数、返回值、调用方式),就会产生错误————但 Debug 方式下,栈的访问通过 EBP 寄存器保存的地址实现,如果没有发生数组越界之类的错误(或是越界“不多”),函数通常能正常执行;Release 方式下,优化会省略 EBP 栈基址指针,这样通过一个全局指针访问栈就会造成返回地址错误是程序崩溃。C++ 的强类型特性能检查出大多数这样的错误,但如果用了强制类型转换,delphi 皮肤控件源码就不行了。你可以在 Release 版本中强制加入 /Oy- 编译选项来关掉帧指针省略,以确定是否此类错误。此类错误通常有:

        ● MFC 消息响应函数书写错误。正确的应为

        afx_msg LRESULT OnMessageOwn(WPARAM wparam, LPARAM lparam);

        ON_MESSAGE 宏包含强制类型转换。防止这种错误的方法之一是重定义 ON_MESSAGE 宏,把下列代码加到 stdafx.h 中(在#include "afxwin.h"之后),函数原形错误时编译会报错

        #undef ON_MESSAGE

        #define ON_MESSAGE(message, memberFxn) { message, 0, 0, 0, AfxSig_lwl, (AFX_PMSG)(AFX_PMSGW)(static_cast< LRESULT (AFX_MSG_CALL CWnd::*)(WPARAM, LPARAM) > (&memberFxn) },

        (2) volatile 型变量:volatile 告诉编译器该变量可能被程序之外的未知方式修改(如系统、其他进程和线程)。优化程序为了使程序性能提高,常把一些变量放在寄存器中(类似于 register 关键字),而其他进程只能对该变量所在的内存进行修改,而寄存器中的值没变。如果你的程序是多线程的,或者你发现某个变量的值与预期的不符而你确信已正确的设置了,则很可能遇到这样的问题。这种错误有时会表现为程序在最快优化出错而最小优化正常。把你认为可疑的变量加上 volatile 试试。

        (3) 变量优化:优化程序会根据变量的使用情况优化变量。例如,函数中有一个未被使用的变量,在 Debug 版中它有可能掩盖一个数组越界,而在 Release 版中,这个变量很可能被优化调,此时数组越界会破坏栈中有用的数据。当然,实际的情况会比这复杂得多。与此有关的错误有:

        ● 非法访问,包括数组越界、指针错误等。flash翻书动画源码例如

        void fn(void)

        {

        int i;

        i = 1;

        int a[4];

        {

        int j;

        j = 1;

        }

        a[-1] = 1;//当然错误不会这么明显,例如下标是变量

        a[4] = 1;

        }

        j 虽然在数组越界时已出了作用域,但其空间并未收回,因而 i 和 j 就会掩盖越界。而 Release 版由于 i、j 并未其很大作用可能会被优化掉,从而使栈被破坏。

        3. _DEBUG 与 NDEBUG :当定义了 _DEBUG 时,assert() 函数会被编译,而 NDEBUG 时不被编译。除此之外,VC++中还有一系列断言宏。这包括:

        ANSI C 断言 void assert(int expression );

        C Runtime Lib 断言 _ASSERT( booleanExpression );

        _ASSERTE( booleanExpression );

        MFC 断言 ASSERT( booleanExpression );

        VERIFY( booleanExpression );

        ASSERT_VALID( pObject );

        ASSERT_KINDOF( classname, pobject );

        ATL 断言 ATLASSERT( booleanExpression );

        此外,TRACE() 宏的编译也受 _DEBUG 控制。

        所有这些断言都只在 Debug版中才被编译,而在 Release 版中被忽略。唯一的例外是 VERIFY() 。事实上,这些宏都是调用了 assert() 函数,只不过附加了一些与库有关的调试代码。如果你在这些宏中加入了任何程序代码,而不只是布尔表达式(例如赋值、能改变变量值的函数调用 等),那么 Release 版都不会执行这些操作,从而造成错误。初学者很容易犯这类错误,查找的方法也很简单,因为这些宏都已在上面列出,只要利用 VC++ 的java绩效系统源码 Find in Files 功能在工程所有文件中找到用这些宏的地方再一一检查即可。另外,有些高手可能还会加入 #ifdef _DEBUG 之类的条件编译,也要注意一下。

        顺便值得一提的是 VERIFY() 宏,这个宏允许你将程序代码放在布尔表达式里。这个宏通常用来检查 Windows API 的返回值。有些人可能为这个原因而滥用 VERIFY() ,事实上这是危险的,因为 VERIFY() 违反了断言的思想,不能使程序代码和调试代码完全分离,最终可能会带来很多麻烦。因此,专家们建议尽量少用这个宏。

        4. /GZ 选项:这个选项会做以下这些事

        (1) 初始化内存和变量。包括用 0xCC 初始化所有自动变量,0xCD ( Cleared Data ) 初始化堆中分配的内存(即动态分配的内存,例如 new ),0xDD ( Dead Data ) 填充已被释放的堆内存(例如 delete ),0xFD( deFencde Data ) 初始化受保护的内存(debug 版在动态分配内存的前后加入保护内存以防止越界访问),其中括号中的词是微软建议的助记词。这样做的好处是这些值都很大,作为指针是不可能的(而且 位系统中指针很少是奇数值,在有些系统中奇数的指针会产生运行时错误),作为数值也很少遇到,而且这些值也很容易辨认,因此这很有利于在 Debug 版中发现 Release 版才会遇到的错误。要特别注意的是,很多人认为编译器会用 0 来初始化变量,这是错误的(而且这样很不利于查找错误)。

        (2) 通过函数指针调用函数时,会通过检查栈指针验证函数调用的匹配性。(防止原形不匹配)

        (3) 函数返回前检查栈指针,确认未被修改。(防止越界访问和原形不匹配,与第二项合在一起可大致模拟帧指针省略 FPO )

        通常 /GZ 选项会造成 Debug 版出错而 Release 版正常的现象,因为 Release 版中未初始化的变量是随机的,这有可能使指针指向一个有效地址而掩盖了非法访问。

        除此之外,/Gm /GF 等选项造成错误的情况比较少,而且他们的效果显而易见,比较容易发现。

       三、怎样“调试” Release 版的程序

        遇到 Debug 成功但 Release 失败,显然是一件很沮丧的事,而且往往无从下手。如果你看了以上的分析,结合错误的具体表现,很快找出了错误,固然很好。但如果一时找不出,以下给出了一些在这种情况下的策略。

        1. 前面已经提过,Debug 和 Release 只是一组编译选项的差别,实际上并没有什么定义能区分二者。我们可以修改 Release 版的编译选项来缩小错误范围。如上所述,可以把 Release 的选项逐个改为与之相对的 Debug 选项,如 /MD 改为 /MDd、/O1 改为 /Od,或运行时间优化改为程序大小优化。注意,一次只改一个选项,看改哪个选项时错误消失,再对应该选项相关的错误,针对性地查找。这些选项在 Project\Settings... 中都可以直接通过列表选取,通常不要手动修改。由于以上的分析已相当全面,这个方法是最有效的。

        2. 在编程过程中就要时常注意测试 Release 版本,以免最后代码太多,时间又很紧。

        3. 在 Debug 版中使用 /W4 警告级别,这样可以从编译器获得最大限度的错误信息,比如 if( i =0 )就会引起 /W4 警告。不要忽略这些警告,通常这是你程序中的 Bug 引起的。但有时 /W4 会带来很多冗余信息,如 未使用的函数参数 警告,而很多消息处理函数都会忽略某些参数。我们可以用

        #progma warning(disable: ) //禁止

        //...

        #progma warning(default: ) //重新允许

        来暂时禁止某个警告,或使用

        #progma warning(push, 3) //设置警告级别为 /W3

        //...

        #progma warning(pop) //重设为 /W4

        来暂时改变警告级别,有时你可以只在认为可疑的那一部分代码使用 /W4。

        4.你也可以像 Debug 一样调试你的 Release 版,只要加入调试符号。在 Project/Settings... 中,选中 Settings for "Win Release",选中 C/C++ 标签,Category 选 General,Debug Info 选 Program Database。再在 Link 标签 Project options 最后加上 "/OPT:REF" (引号不要输)。这样调试器就能使用 pdb 文件中的调试符号。但调试时你会发现断点很难设置,变量也很难找到——这些都被优化过了。不过令人庆幸的是,Call Stack 窗口仍然工作正常,即使帧指针被优化,栈信息(特别是返回地址)仍然能找到。这对定位错误很有帮助。

tracert工作原理&路由原理

       1:1 <1 ms <1 ms <1 ms proxy.huayuan.hy [...1]

        2 * ms ms ..2.3

        3 ms ms ms ...

        4 ms ms ms ..7.

        5 ms ms ms ..3.

        6 ms ms ms ..3.

        7 ms ms ms xd--5-a8.bta.net.cn [...5]

       Trace complete.

       看一下上面这个过程 应该不用解释了

       下面我们来分析一下 我们是怎么看到这个回显的

       大家都知道我们所发送的tracert数据包 属于icmp数据包的一种

       关于ttl的概念不知道能否理解

       ttl 就是生存时间的意思 也就是我们所发送的数据包 在转发过程中的寿命问题

       很好理解 如果寿命为0的话 就不能到达目的地 每经过一个三层设备我们的数据包的

       ttl值都会减一 如果减到0 就证明不能到达就会给我们的源主机一个回应显示

       并告知源主机 在哪个三层设备将这个生存值置0的 然后将这个三层设备的ip地址转发给

       源主机

       上面我们说的是ttl的一个原理和作用

       下面我们来说 tracert包的原理

       我们发送TRACERT包时 第一次的包的ttl值为1 这样到第一个三层设备那就会给

       源主机一个回应 并告知其IP

       依次类推 第二次发送的时候的TTL值等于2

       第三次为3 默认最大hop为

       也就是说ttl最大升到

       这样我门就能清楚的看到 我们的数据包是怎么到达目的地的

       2:当IP子网中的一台主机发送IP分组给同一IP子网的另一台主机时,它将直接把IP分组送到网络上,对方就能收到。而要送给不同IP子网上的主机时,它要选择一个能到达目的子网上的路由器,把IP分组送给该路由器,由路由器负责把IP分组送到目的地。如果没有找到这样的路由器,主机就把IP分组送给一个称为“缺省网关(default gateway)”的路由器上。“缺省网关”是每台主机上的一个配置参数,它是接在同一个网络上的某个路由器端口的IP地址。

        路由器转发IP分组时,只根据IP分组目的IP地址的网络号部分,选择合适的端口,把IP分组送出去。同主机一样,路由器也要判定端口所接的是否是目的子网,如果是,就直接把分组通过端口送到网络上,否则,也要选择下一个路由器来传送分组。路由器也有它的缺省网关,用来传送不知道往哪儿送的IP分组。这样,通过路由器把知道如何传送的IP分组正确转发出去,不知道的IP分组送给“缺省网关”路由器,这样一级级地传送,IP分组最终将送到目的地,送不到目的地的IP分组则被网络丢弃了。目前TCP/IP网络,全部是通过路由器互连起来的,Internet就是成千上万个IP子网通过路由器互连起来的国际性网络。网络称为以路由器为基础的网络(router based network),形成了以路由器为节点的“网间网”。在“网间网”中,路由器不仅负责对IP分组的转发,还要负责与别的路由器进行联络,共同确定“网间网”的路由选择和维护路由表。路由动作包括两项基本内容:寻径和转发。寻径即判定到达目的地的最佳路径,由路由选择算法来实现。由于涉及到不同的路由选择协议和路由选择算法,要相对复杂一些。为了判定最佳路径,路由选择算法必须启动并维护包含路由信息的路由表,其中路由信息依赖于所用的路由选择算法而不尽相同。路由选择算法将收集到的不同信息填入路由表中,根据路由表可将目的网络与下一站(nexthop)的关系告诉路由器。路由器间互通信息进行路由更新,更新维护路由表使之正确反映网络的拓扑变化,并由路由器根据量度来决定最佳路径。这就是路由选择协议(routing protocol),例如路由信息协议(RIP)、开放式最短路径优先协议(OSPF)和边界网关协议(BGP)等。

        转发即沿寻径好的最佳路径传送信息分组。路由器首先在路由表中查找,判明是否知道如何将分组发送到下一个站点(路由器或主机),如果路由器不知道如何发送分组,通常将该分组丢弃;否则就根据路由表的相应表项将分组发送到下一个站点,如果目的网络直接与路由器相连,路由器就把分组直接送到相应的端口上。这就是路由转发协议(routed protocol)。

        路由转发协议和路由选择协议是相互配合又相互独立的概念,前者使用后者维护的路由表,同时后者要利用前者提供的功能来发布路由协议数据分组。

相关栏目:百科