1.LOC度量指标
2.通达信量化擒龙先手!分组分组主附图/选股指标源码分享
3.量化交易领域有哪些经典策略
4.指标源码有什么用
5.量化投资之工具篇:Backtrader从入门到精通(3)Cerebro代码详解
6.股票里的量化量化源码是什么意思
LOC度量指标
LOC度量指标主要用于量化软件代码量。它关注的源码源码是源代码行数,能提供一个对代码规模的分组分组直观了解。LOC指标常用于软件开发项目的量化量化规划、评估以及比较不同程序的源码源码外卖源码1002外卖源码大小。
在软件开发过程中,分组分组LOC指标被用于衡量代码量,量化量化帮助开发者估算完成任务的源码源码时间,以及预测程序的分组分组维护成本。然而,量化量化LOC指标也存在局限性。源码源码它不能反映代码的分组分组质量或效率,更侧重于代码的量化量化物理长度。
对于、源码源码Flash等非文本文件,LOC度量指标无法应用。因为它主要针对文本文件,统计文件数量、文本行数和字符数。文件数量提供文件的总体计数,文本行数反映文本内容的长度,而字符数则是所有字符的总数。
例如,对于文本文件的分析,通过LOC度量指标可以得到文件的详细信息,包括文件数量、文本行数和字符数。仙梦奇缘源码这有助于理解文本文件的大小和复杂性,对文档的管理以及查找和替换操作提供方便。
比如,对于某个项目,统计得到文件数量为个,文本行数为,行,字符数为,个。这表明项目包含大量文本文件,且每文件平均有行和1,个字符。这样的信息有助于项目团队了解项目规模,制定合理的时间和资源分配。
而“LOC”在中文中的含义是“代码长度”,来源于英文“Length of the code”。它是一个软件开发中的度量指标,主要用于量化源代码的大小。通过统计代码行数,LOC度量指标提供了一个直观的度量单位,便于评估代码规模,指导项目管理。
例如,LOC指标可以用于评估某个软件项目的工作量。在进行软件开发时,项目经理可以利用LOC指标来估算开发时间、预算和资源需求。这有助于在项目规划阶段进行合理的成本和时间估算。
总结而言,LOC度量指标是wordpress文库系统源码一个有用的工具,能够提供关于代码量的清晰、直观的度量。通过分析文件数量、文本行数和字符数,可以得到关于项目规模、复杂度和工作量的重要信息。然而,值得注意的是,LOC指标仅关注代码的物理长度,而忽略代码的质量、可读性和维护性。因此,在使用LOC度量指标时,需要结合其他评估指标,以获得更全面的项目理解。
通达信量化擒龙先手!主附图/选股指标源码分享
通达信量化擒龙先手!主附图/选股指标源码分享
一. 指标简介:
二. 主图指标源码
MA5:MA(C,5);
MA:MA(C,);
MA:MA(C,);
MA:MA(C,);
DIF1:=EMA(CLOSE,)-EMA(CLOSE,);
DEA1:=EMA(DIF1,9);
AAA1:=(DIF1-DEA1)*2*;
AAA上:=IF(AAA1>REF(AAA1,1),AAA1,DRAWNULL);
AAA下:=IF(AAA1
买:=;
入:=AAA1-REF(AAA1,1);
正大:=CROSS(入,买);
DIF:=EMA(CLOSE,)-EMA(CLOSE,);
DEA:=EMA(DIF,);
AAA:=(DIF-DEA)*2*;
牛股:=CROSS(AAA-REF(AAA,1),);
正大牛股:=正大 AND 牛股;
HSL:=V/CAPITAL*>5;
S1:=IF(NAMELIKE('S'),0,1);
S2:=IF(NAMELIKE('*'),0,1);
Z3:=NOT(INBLOCK('近期解禁'));
Z4:=NOT(INBLOCK('拟减持'));
Z5:=NOT(INBLOCK('股东减持'));
Z6:=NOT(INBLOCK('基金减持'));
Z7:=NOT(INBLOCK('即将解禁'));
Z8:=IF(CODELIKE(''),0,1);
Z9:=IF(CODELIKE('8'),0,1);
去掉:=S1 AND S2 AND Z3 AND Z4 AND Z5 AND Z6 AND Z7 AND Z8 AND Z9;
AA:=MA(CLOSE,8);
BB:=((ATAN((AA - REF(AA,1))) * 3.) * );
均线:=MA(CLOSE,);
均线:=MA(CLOSE,);
均线:=MA(CLOSE,);
天马:=((((((OPEN <= 均线) AND ((均线 - REF(均线,1)) > 0))
AND (CLOSE > 均线)) AND (BB > 1)) AND ((CLOSE / OPEN) > 1.)));
{ 股价必涨}
AA:=IF(CLOSE/REF(CLOSE,1)>1. AND HIGH/CLOSE<1. AND IF(CLOSE>REF(CLOSE,1),,0)>0, , 0);
SS:=MA((LOW+HIGH+CLOSE)/3,5)>REF(MA((LOW+HIGH+CLOSE)/3,5),1) AND REF(MA((LOW+HIGH+CLOSE)/3,5),1)
SC:=LHHV(MA((LOW+HIGH+CLOSE)/3,5),) AND C>REF(C,1) AND C>O;
MR:=SC AND COUNT(SS,2);
BB:=MR AND NOT(REF(MR,1));
股价必涨:=AA OR BB OR 天马;
{ 抄底}
二十日换手率:=BETWEEN(SUM(HSCOL,),,);{ 意思是 日换手率介于---之间}
DFO:=(C-REF(C,1))/REF(C,1)*<-5;
AAO:=BARSLAST(DFO);
突破:=CROSS(C,REF(O,AAO));
抄底:=二十日换手率 AND 突破;
三.副图指标源码:
DIF1:=EMA(CLOSE,)-EMA(CLOSE,);
DEA1:=EMA(DIF1,9);
AAA1:=(DIF1-DEA1)*2*;
AAA上:=IF(AAA1>REF(AAA1,1),AAA1,DRAWNULL);
AAA下:=IF(AAA1
买:=;
入:=AAA1-REF(AAA1,1);
正大:=CROSS(入,买);
DIF:=EMA(CLOSE,)-EMA(CLOSE,);
DEA:=EMA(DIF,);
AAA:=(DIF-DEA)*2*;
牛股:=CROSS(AAA-REF(AAA,1),);
正大牛股:=正大 AND 牛股;
HSL:=V/CAPITAL*>5;
S1:=IF(NAMELIKE('S'),0,1);
S2:=IF(NAMELIKE('*'),0,1);
Z3:=NOT(INBLOCK('近期解禁'));
Z4:=NOT(INBLOCK('拟减持'));
Z5:=NOT(INBLOCK('股东减持'));
Z6:=NOT(INBLOCK('基金减持'));
Z7:=NOT(INBLOCK('即将解禁'));
Z8:=IF(CODELIKE(''),0,1);
Z9:=IF(CODELIKE('8'),0,1);
去掉:=S1 AND S2 AND Z3 AND Z4 AND Z5 AND Z6 AND Z7 AND Z8 AND Z9;
AA:=MA(CLOSE,8);
BB:=((ATAN((AA - REF(AA,1))) * 3.) * );
均线:=MA(CLOSE,);
均线:=MA(CLOSE,);
均线:=MA(CLOSE,);
天马:=((((((OPEN <= 均线) AND ((均线 - REF(均线,1)) > 0))
AND (CLOSE > 均线)) AND (BB > 1)) AND ((CLOSE / OPEN) > 1.)));
{ 股价必涨}
AA:=IF(CLOSE/REF(CLOSE,1)>1. AND HIGH/CLOSE<1. AND IF(CLOSE>REF(CLOSE,1),,0)>0, , 0);
SS:=MA((LOW+HIGH+CLOSE)/3,5)>REF(MA((LOW+HIGH+CLOSE)/3,5),1) AND REF(MA((LOW+HIGH+CLOSE)/3,5),1)
SC:=LHHV(MA((LOW+HIGH+CLOSE)/3,5),) AND C>REF(C,1) AND C>O;
MR:=SC AND COUNT(SS,2);
BB:=MR AND NOT(REF(MR,1));
股价必涨:=AA OR BB OR 天马;
{ 抄底}
二十日换手率:=BETWEEN(SUM(HSCOL,),,);{ 意思是 日换手率介于---之间}
DFO:=(C-REF(C,1))/REF(C,1)*<-5;
AAO:=BARSLAST(DFO);
突破:=CROSS(C,REF(O,AAO));
抄底:=二十日换手率 AND 突破;
四. 选股指标源码
指标源码内容与前文一致,仅包含主图和副图指标源码,用于量化分析股票。指标包括移动平均线、MACD、股价波动判断、换手率分析等,通过设置条件筛选出具有投资潜力的股票。使用时根据具体市场情况和策略进行调整。注意:指标的PTN方案源码有效性需结合市场情况综合判断,不应单一依赖。
量化交易领域有哪些经典策略
量化交易种比较受宽客们所熟知的量化经典策略有:alpha对冲(股票+期货)
集合竞价选股(股票)
多因子选股(股票)
网格交易(期货)
指数增强(股票)
跨品种套利(期货)
跨期套利(期货)
日内回转交易(股票)
做市商交易(期货)
海龟交易法(期货)
行业轮动(股票)
机器学习(股票)
以上这些经典的量化交易策略源码都可以到掘金量化交易平台查阅。
指标源码有什么用
指标源码的用途在于提供量化分析和决策支持。 指标源码是一种编程语言编写的程序代码,用于生成各种技术指标和统计信息。以下是关于指标源码作用的详细解释: 一、量化分析的核心工具 指标源码在量化分析中扮演着重要角色。通过编写特定的代码,可以获取股票、期货等金融市场的各种技术指标,如移动平均线、相对强弱指数等。这些指标有助于分析市场趋势、判断买卖时机,从而辅助投资者做出决策。 二、个性化定制分析策略 指标源码可以根据投资者的需求进行个性化定制。投资者可以根据自己的投资策略、风险偏好等因素,编写符合自身需求的指标代码。这样,投资者可以更加精准地捕捉市场机会,提高投资效率。 三、提高决策效率和准确性 通过指标源码,投资者可以快速生成大量的数据和分析结果,从而更加全面地了解市场状况。2020最新指标源码这对于需要快速响应市场变化的投资者来说,具有重要意义。此外,基于指标源码的分析结果,可以帮助投资者验证投资策略的有效性,从而提高决策的准确性。 四、技术研究和开发的重要资源 指标源码也是技术研究和开发的重要资源。通过对源码的研究,开发者可以了解各种技术指标的实现原理,从而进行更深入的技术研究和创新。这对于金融领域的科技进步和投资者福利的提升,具有积极的推动作用。 总之,指标源码在量化分析、个性化投资、决策支持以及技术研究和开发等方面都具有重要作用。它有助于投资者更深入地了解市场,提高投资决策的效率和准确性。量化投资之工具篇:Backtrader从入门到精通(3)Cerebro代码详解
在深入理解backtrader的工具使用中,Cerebro作为核心控制器,其代码详解至关重要。它负责整个系统的协调和管理,虽然看似复杂,但实质上是将任务分发给其他组件如策略、数据源和分析器。让我们通过源代码解析来逐步揭示其工作原理。
首先,Cerebro的初始化主要设置公共属性,并接受一系列参数,这些参数在元类中统一处理,通过**kwargs传递。初始化过程中,实际上并未做太多工作,而是为后续操作准备了基础结构。
数据源的添加是通过cerebro.adddata方法,它可以处理普通数据和resample/replay数据,这个过程涉及对数据源的筛选和处理后加入到Cerebro的datas列表中。
策略的添加同样简单,只是将策略类及参数存储在strats容器中,策略会在run时实例化。
Cerebro的run函数是整个流程的驱动器,它根据传入的参数,按照时间驱动数据运行,同时协调策略、分析器和观察者等组件协同工作。run函数的代码复杂,但关键在于它如何管理和调度各个组件。
最后,Cerebro通过plot方法实现可视化输出,其自身并不直接进行绘图,而是调用plotter模块来完成。
总的来说,虽然Cerebro的代码看起来复杂,但实际上它的作用是连接各个组件,提供一个框架让策略和数据处理得以高效执行。理解Cerebro的工作原理后,后续理解其他部件如data feeds的运作就更为顺畅了。下文我们将转向数据类的解析,进一步探讨数据的管理与驱动机制。
股票里的源码是什么意思
股票中的源码通常指的是用于分析、交易或获取股票市场数据的编程代码。这些代码可能由各种编程语言编写,如Python、C++、Java等,并通常用于构建算法交易系统、量化交易策略、技术指标分析工具等。
详细来说,源码在股票领域的应用主要体现在以下几个方面:
1. 数据获取与处理:源码可以用来从股票交易所、财经数据提供商等处获取实时或历史股票数据。例如,使用Python的pandas库,我们可以方便地获取、清洗和处理股票数据。
2. 策略开发与回测:量化交易者会编写源码来开发交易策略,并通过历史数据进行策略回测。这样可以在实际投入资金前评估策略的有效性和风险。例如,一个简单的移动平均交叉策略可以通过比较短期和长期移动平均线的位置来确定买入和卖出点。
3. 技术指标计算:源码可用于计算各种技术指标,如RSI、MACD、布林带等,这些指标有助于交易者分析股票价格的动量和趋势。
4. 自动化交易:一旦策略经过验证并被认为是有利可图的,源码可以被用来构建自动化交易系统。这些系统可以实时监控市场,并在满足特定条件时自动执行交易。
5. 风险管理与优化:源码还可用于开发风险管理工具,如止损和止盈算法,以及用于优化投资组合配置的算法。
举例来说,一个Python源码片段可能用于从网络API获取股票数据,计算某只股票的简单移动平均线,并根据移动平均线的交叉点生成买入或卖出信号。这样的源码不仅有助于交易者做出更明智的投资决策,还可以通过自动化减少人为错误和情绪干扰。
一大波国外高清量化网址正在袭来...
随着春节的结束,工作和学习的节奏回归正轨,我开始整理各类量化资源,为读者们提供更新内容。在海外资料的探索中,我发现了一些优质的量化资料,包括理论和源码,适合初学者入门。考虑到国内朋友们的需求,我想把这些国外的好资源介绍给大家,希望你们能从中汲取精华,提升自己。
对于国内逐渐兴起的量化交易,虽然起源于国外,但了解和学习的渠道在哪里呢?这里有一份推荐清单:《Best Quant Blogs and Websites》。这个网址是 feedly.com/i/top/quant-...
这个列表收录了个备受国外关注的量化网站和博客,如Quantocracy、Quantpedia和Quantstart等,都是经常被提及的资源。由于是国外站点,访问可能受限,但别担心,我已经将所有相关网址保存,只需回复公Z号『量化君也』的暗号即可获取。
除了上述资源,还有其他文章供你参考,如《Best Quant websites | An unconventional guide》和《TOP Useful Blogs and Websites for Quants》。国外的量化资源丰富多样,国内的朋友可以通过这些站点学习到更多专业知识。
以QuantInsti为例,这个网站可以直接访问,无需登录,它的量化文章分类清晰,是入门学习的好去处。网站的Blogs标签下,你可以找到涵盖自动化交易、机器学习等个版块的深入教程,包括《Algorithmic Trading Strategies》、《Stock Market Data Analysis》等文章。
其中,机器学习版块尤其出色,不仅有理论讲解,还提供实践案例和Python代码,非常适合学习者。如果你想尝试使用神经网络、决策树等算法进行量化交易,这里也有相关的文章推荐,如《Neural Network In Python》和《Decision Tree For Trading Using Python》等。
总的来说,国外的量化资源丰富且实用,借助翻译工具,即使英语基础一般,也能无障碍学习。希望这些信息能帮助到你,欢迎关注『量化君也』公Z号,那里有更多的量化策略和知识分享。我是@quantkoala,期待与你一起交流和进步!