1.FFmpeg开发笔记(十二)Linux环境给FFmpeg集成libopus和libvpx
2.FFmpeg源码分析:视频滤镜介绍(上)
3.msys2编译FFmpeg全网最详细步骤
4.图像格式--FFMPEG代码走读-TIFF格式编码
5.FFmpeg开发笔记(十三)Windows环境给FFmpeg集成libopus和libvpx
6.Windows下编译FFmpeg
FFmpeg开发笔记(十二)Linux环境给FFmpeg集成libopus和libvpx
在FFmpeg开发中,源码用法为了支持WebM格式的源码用法视频,特别是源码用法其音频编码的Opus和视频编码的VP8/VP9,需要在Linux环境中集成libopus和libvpx库。源码用法以下是源码用法具体的操作步骤:
1. 安装libopus:首先,从ftp.osuosl.org下载libopus源码,源码用法微客公寓源码如libopus-1.4。源码用法解压后,源码用法运行`./configure`进行配置,源码用法接着执行`make`和`make install`编译并安装。源码用法
2. 安装libvpx:访问github.com/webmproject获取libvpx-1..1源码。源码用法解压后,源码用法使用`./configure --enable-pic --disable-examples --disable-unit-tests`配置,源码用法然后编译并安装,源码用法即`make`和`make install`。源码用法
3. 重新编译FFmpeg:由于FFmpeg默认不支持opus和vpx,需要在FFmpeg源码目录下,通过`./configure`命令添加`--enable-libopus --enable-libvpx`选项。接着执行`make clean`清理,`make -j4`编译,最后使用`make install`安装并检查FFmpeg版本以确认成功启用。
按照以上步骤,你就能在Linux环境中成功集成libopus和libvpx到FFmpeg,从而支持WebM格式的视频编码。《FFmpeg开发实战:从零基础到短视频上线》一书中的详细说明提供了完整的指导。
FFmpeg源码分析:视频滤镜介绍(上)
FFmpeg在libavfilter模块提供了丰富的音视频滤镜功能。本文主要介绍FFmpeg的视频滤镜,包括黑色检测、视频叠加、色彩均衡、去除水印、抗抖动、矩形标注、九宫格等。
黑色检测滤镜用于检测视频中的纯黑色间隔时间,输出日志和元数据。若检测到至少具有指定最小持续时间的黑色片段,则输出开始、结束时间戳与持续时间。该滤镜通过参数选项rs、gs、bs、rm、k1源码gm、bm、rh、gh、bh来调整红、绿、蓝阴影、基调与高亮区域的色彩平衡。
视频叠加滤镜将两个视频的所有帧混合在一起,称为视频叠加。顶层视频覆盖底层视频,输出时长为最长的视频。实现代码位于libavfilter/vf_blend.c,通过遍历像素矩阵计算顶层像素与底层像素的混合值。
色彩均衡滤镜调整视频帧的RGB分量占比,通过参数rs、gs、bs、rm、gm、bm、rh、gh、bh在阴影、基调与高亮区域进行色彩平衡调整。
去除水印滤镜通过简单插值抑制水印,仅需设置覆盖水印的矩形。代码位于libavfilter/vf_delogo.c,核心是基于矩形外像素值计算插值像素值。
矩形标注滤镜在视频画面中绘制矩形框,用于标注ROI兴趣区域。在人脸检测与人脸识别场景中,检测到人脸时会用矩形框进行标注。
绘制x宫格滤镜用于绘制四宫格、九宫格,模拟画面拼接或分割。此滤镜通过参数x、y、width、height、color、thickness来定义宫格的河北棋牌源码论坛位置、大小、颜色与边框厚度。
调整yuv或rgb滤镜通过计算查找表,绑定像素输入值到输出值,然后应用到输入视频,实现色彩、对比度等调整。相关代码位于vf_lut.c,支持四种类型:packed 8bits、packed bits、planar 8bits、planar bits。
将彩色视频转换为黑白视频的滤镜设置U和V分量为,实现效果如黑白视频所示。
msys2编译FFmpeg全网最详细步骤
本文提供详细步骤使用msys2编译FFmpeg源码,无需安装mingw。msys2在Windows上模拟Linux环境,允许使用大多数shell命令,类似于虚拟机但更轻量级。首先,从msys2.github.io下载并安装msys2到D盘,避开系统盘C盘。
在安装过程中,若进度卡住,可取消安装后重新尝试。安装完毕后,进入安装目录启动msys2_shell.cmd,并调整字符集以避免中文乱码。确保设置生效后重启msys2_shell.cmd。
接着,更换msys2的国内源,可参考相关指南。免费音视频学习资源推荐,包括FFmpeg、WebRTC、RTMP等技术,点击下方链接免费报名,先保存学习路径。
使用msys2安装软件,如yasm、make、diffutils、看Spring源码作用pkg-config。若安装缓慢,多次尝试直至完成。通过命令查看gcc安装状态。
下载最新FFmpeg源码(FFmpeg4.2.2),创建名为“SourceCode”的文件夹,解压源码并存放其中。
通过命令行进入msys2目录,配置FFmpeg编译参数,例如指定安装路径。生成的Makefile文件将用于编译过程。此步骤可使用批处理文件执行以提高效率。
编译完成后,ffmpeg库和可执行文件位于msys/usr/local/ffmpeg/bin目录。将msys\mingw\bin下的dll库复制到msys\usr\local\ffmpeg\bin,以确保依赖性。
需x库时,先编译x库,再编译FFmpeg。遵循本指南的详细步骤,您将成功在Windows上使用msys2编译FFmpeg源码。
图像格式--FFMPEG代码走读-TIFF格式编码
本文从FFMPEG源码角度解读TIFF编码内容,无需过多介绍,直接开启解读。TIFF编码涉及到的结构体TiffEncoderContext,用于存储与TIFF编码相关的上下文信息,包括编码上下文信息、长宽信息、压缩信息、yuv数据信息、缓冲区信息、Strip信息,以及编解码算法和级别信息等。
TIFF文件使用标签(Tags)存储图像的元数据和其他信息,每个标签存储特定类型的信息,如图像宽度、高度、颜色深度等。在FFMPEG中包含的所有tag相关数据可参照下图查看。
此外,还存在特定的补充标签,如DNG和CinemaDNG格式。vix情绪恐慌源码DNG是由Adobe开发的一种开放的RAW图像格式,基于TIFF/EP标准,在TIFF基础上增加了存储更多摄影信息和元数据的特定标签。CinemaDNG是一个基于DNG的开放标准,专为**和视频制作中的RAW图像序列设计,包含与静态图像DNG类似的标签,同时增加了一些特定于视频和**制作的标签,用于管理处理高动态范围的RAW视频数据。
TIFF编码代码位于libavcodec\tiffenc.c文件中。ff_tiff_encoder描述了一个TIFF图像编码器,采用标准FFmpeg库的API封装,包含TIFF编码器的各种信息和函数指针,便于对接到FFMPEG框架。
encode_init函数用于初始化TIFF编码器上下文,并进行必要的检查和设置。encode_close函数在编码器关闭时进行资源清理,确保无内存泄漏。add_entry将一个条目添加到TIFF文件目录中。encode_strip用于将图像数据编码为TIFF文件的一个条带。pack_yuv将YUV图像数据打包成适合TIFF格式的条带。
encode_frame函数主要作用是将一帧图像编码为TIFF格式。具体步骤包括初始化上下文和变量、设置编码器上下文参数、处理不同像素格式、计算每行字节数和数据包大小、分配内存、处理图像数据、写入TIFF文件头、添加TIFF标签、写入目录偏移量并完成编码。
至此,TIFF编码过程解析完毕。源码编译与调试有助于深入理解,增进对TIFF编码的认识。
FFmpeg开发笔记(十三)Windows环境给FFmpeg集成libopus和libvpx
本文将指导读者在Windows环境下,如何为FFmpeg集成libopus和libvpx,进而支持Opus音频编码与VP8/VP9视频编码。首先,介绍libopus的集成步骤。libopus是用于语音交互和音频传输的编码标准,其编解码器为libopus。下载最新版libopus源码,解压后执行配置命令./configure --prefix=/usr/local/libopus。接着,编译并安装libopus,确保环境变量PKG_CONFIG_PATH已包含libopus的pkgconfig路径。
随后,转向libvpx的集成。libvpx是VP8和VP9视频编码标准的编解码器。下载最新libvpx源码,解压并配置./configure --prefix=/usr/local/libvpx --enable-pic --disable-examples --disable-unit-tests,确保使用了--enable-pic选项以避免在编译FFmpeg时的错误。编译、安装libvpx后,同样更新PKG_CONFIG_PATH环境变量。
为了在FFmpeg中启用libopus和libvpx,需要重新编译FFmpeg。确保所有相关库的pkgconfig路径已加载至环境变量PKG_CONFIG_PATH中。通过命令./configure --prefix=/usr/local/ffmpeg --arch=x_ --enable-shared --disable-static --disable-doc --enable-libx --enable-libx --enable-libxavs2 --enable-libdavs2 --enable-libmp3lame --enable-gpl --enable-nonfree --enable-libfreetype --enable-sdl2 --enable-libvorbis --enable-libopencore-amrnb --enable-libopencore-amrwb --enable-version3 --enable-libopus --enable-libvpx --enable-iconv --enable-zlib --extra-cflags='-I/usr/local/lame/include -I/usr/local/libogg/include -I/usr/local/amr/include' --extra-ldflags='-L/usr/local/lame/lib -L/usr/local/libogg/lib -L/usr/local/amr/lib' --cross-prefix=x_-w-mingw- --target-os=mingw重新配置FFmpeg,启用libopus与libvpx功能。接着,执行编译与安装命令,完成FFmpeg的集成。
最后,通过命令ffmpeg -version检查FFmpeg版本信息,确认是否成功启用libopus与libvpx。至此,FFmpeg已成功在Windows环境下集成了libopus和libvpx,支持Opus音频编码与VP8/VP9视频编码。此过程为视频处理应用提供了更丰富编码格式支持,提高了FFmpeg的多功能性与适应性。
Windows下编译FFmpeg
在学习FFmpeg时,Linux(Ubuntu)系统或Mac系统因其优势常常被推荐使用,而非Windows系统。原因在于Windows环境下编译FFmpeg较为繁琐,这增加了学习成本。此外,Windows环境下使用FFmpeg所需的依赖库,如fdk-aac、x等,也需要单独编译,进一步增加了操作难度。然而,对于在Windows系统下使用FFmpeg有需求的同学,本文将提供一套详细的编译和使用方法,旨在帮助大家克服这一难题。
首先,搭建编译环境是关键步骤。需要准备一台装有Windows系统的电脑,并安装Visual Studio,推荐使用VS或VS社区版,最新版本更推荐使用VS。安装VS后,还需安装MSYS2,这是一款在Windows环境下模拟Linux的软件,FFmpeg的编译工作在其中进行。需要注意的是,在下载MSYS2时可能需要网络代理,且通过百度盘下载的版本可能较旧,建议有条件的同学从官网下载。
下载并准备FFmpeg源码是下一步。通过MSYS2安装目录下的msys2_shell.cmd文件,通过注释打开以让MSYS2继承Windows控制台环境变量。找到x Native Tools Command Prompt for VS 命令窗口,进入后执行命令安装编译工具。在MSYS2命令窗口中,通过命令进入FFmpeg源码目录并生成Makefile文件,定义编译工具链、编译库位置、编译类型及不生成特定程序。执行Makefile文件生成的编译命令,即可完成FFmpeg编译。
编译完成后,FFmpeg库会被安装到指定目录。在Windows系统中找到该目录的方法是确定MSYS2根目录,通常位于D:\MSYS。编译好的FFmpeg库位于D:\MSYS\usr\local\ffmpeg目录下。
在Visual Studio项目中引用FFmpeg库,首先创建新项目,添加头文件和库文件路径,确保VS能正确编译代码。引入头文件时需注意使用extern "C"关键字,并确保将库正确添加到项目中。运行编译好的程序时,若出现找不到动态库的错误,只需将已编译的FFmpeg库复制到执行程序所在目录即可。
若需编译FFmpeg依赖库如SDL、x等,同样需要在Windows系统下进行编译。以SDL为例,获取源码并使用CMake生成VS工程,编译出适用于Windows的动态库。同样地,x和fdk-aac的编译也遵循类似流程,确保输出目录结构符合FFmpeg的要求。
最后,设置环境变量PKG_CONFIG_PATH,告知FFmpeg相关库的位置。重新生成Makefile文件并重新编译,将编译好的依赖库拷贝到FFmpeg的bin目录下,即可执行ffmpeg.exe或ffplay.exe命令。
综上,本文详细介绍了在Windows系统下编译和使用FFmpeg的方法。对于Windows环境下编译FFmpeg的难点在于搭建编译环境和处理依赖库的编译问题。通过本文提供的步骤和方法,希望可以帮助大家顺利地在Windows系统下使用FFmpeg,克服学习成本和操作难度,进一步推动学习进程。
FFmpeg交叉编译、脚本参数配置
一:下载并解压ffmpeg源码
使用git或wget下载ffmpeg源码到/root/ff目录,安装git或wget后执行命令解压。
检查解压后的文件。
使用tar命令解压ffmpeg-3.4.tar.bz2文件。
使用unzip命令解压NDK压缩包。
查看目录结构。
安装make工具,用于自动化编译工作,提高效率。
二:配置编译脚本
定义环境变量,包括NDK目录、架构下的so库和头文件、交叉编译工具、CPU类型和输出路径。
使用env命令查看环境变量。
解决NDK版本r后gcc兼容问题,通过修改cc路径使用clang。
执行make命令进行编译,使用-j参数指定并行任务数,编译完成后执行make install安装。
在指定路径下生成输出文件。
三:创建Shell脚本
创建并编辑android.sh文件,实现自动化交叉编译流程。
调整脚本参数实现动态配置。
重新执行脚本,生成编译结果。
FFmpeg编解码处理-转码全流程简介
本文基于 FFmpeg 4.1 版本,对转码全流程进行简要介绍。转码过程主要分为输入、输出、转码、播放四大环节,其中转码功能占据较大比重。转码的核心在于解码和编码两部分,尽管在实际示例程序中,编码、解码与输入、输出难以完全分割。具体流程如下:
1. **解复用**:从输入文件中读取编码帧,判断流类型,并将编码帧送入对应的解码器(视频或音频)。
2. **解码**:将编码帧解码,生成原始帧。
3. **滤镜**:FFmpeg 提供多种滤镜,用于处理原始帧数据。本例中使用空滤镜,以确保视频流输出的像素格式转换为编码器支持的格式,音频流输出的声道布局同样转换为编码器支持的布局。这一步为编码操作做好准备。
4. **编码**:原始视音频帧通过编码器转换为编码帧。
5. **复用**:编码帧按不同流类型交织写入输出文件。
**转码例程简介**:
转码功能复杂,示例程序难以简化。本例程支持指定视音频编码格式与输出文件封装格式。若指定格式为 "copy",输出流将采用与输入流相同的编码格式。与 FFmpeg 命令不同,此例程在 "copy" 时,会进行编码与解码操作,耗时较长。验证方法与命令行操作类似,源代码文件主要包括在 main. c 中的 transcode_video()、transcode_audio() 和 transcode_audio_with_afifo() 函数,这些函数展示了音视频转码的实现方法。
**视频与音频转码流程**:
- **视频转码**:主要在 transcode_video() 函数中实现,处理流程包含解复用、解码、滤镜处理和编码等步骤。
- **音频转码**:在 transcode_audio() 函数中实现,同样涉及解复用、解码、滤镜处理和编码。
**时间戳处理**:
在封装格式处理中,时间基的理解不是必需的,但在编解码过程中,正确的时间基转换至关重要。容器的时间基与编解码器上下文的时间基不同,解码编码过程中需要进行转换。对于视频,原始帧时间基为 1/framerate,编码前需将容器时间基转换为 1/framerate,编码后转换回输出容器的时间基。对于音频,原始帧时间为 1/sample_rate,同样需要进行相应的时间基转换,若使用音频 FIFO,需使用 1/sample_rate 时间基重新生成时间戳信息。
**编译与验证**:
下载示例代码,执行 make 命令生成可执行文件。使用测试文件进行验证,观察文件格式,并指定编码格式与封装格式生成输出文件。
2024-11-27 08:34
2024-11-27 08:09
2024-11-27 07:38
2024-11-27 07:32
2024-11-27 07:00
2024-11-27 06:21