皮皮网

【乾坤斩妖诀源码】【mmoslg手游源码】【LALA图库php源码】hive源码 阅读

时间:2024-11-26 21:08:12 来源:溯源码生产信息

1.Hive 编程专题之 - 自定义函数 Java 篇
2.mimikatz源码分析-lsadump模块(注册表)
3.Flink深入浅出:JDBC Connector源码分析
4.beehive 源码阅读- go 语言的源码阅读自动化机器
5.大数据笔试真题集锦---第五章:Hive面试题

hive源码 阅读

Hive 编程专题之 - 自定义函数 Java 篇

       Hive函数分为内置函数与自定义函数,内建函数包括字符、源码阅读数值、源码阅读日期与转换等类型。源码阅读

       自定义函数类似于传统商业数据库中的源码阅读编译函数,如SQL Server中使用C#解决内建函数无法解决的源码阅读乾坤斩妖诀源码问题,Oracle中则使用Java编写的源码阅读Jar扩展功能,Hive中的源码阅读自定义函数同样依赖Jar,提供Java编写程序以处理内置函数无法达到的源码阅读功能。

       使用Java编写Hive自定义函数步骤包括:

       1. 常看所有内置与自定义函数。源码阅读

       2. Java或Scala编写自定义函数。源码阅读

       3. 使用Eclipse或其他Java编辑工具生成JAR文件。源码阅读

       4. 将生成的源码阅读JAR文件放置于HDFS中,Hive即可应用。源码阅读

       5. 使用Java编写简单的源码阅读Hive自定义函数,步骤如下:

       5.1 使用Eclipse建立Maven项目。

       5.2 引入特定的Hive/Hadoop JAR。

       5.3 从Hive源代码或Hadoop基类库中寻找所需库。

       5.4 编写简单的大写转换函数。

       5.5 导出Eclipse,导入Hive类路径。

       5.6 定义Hive函数,需带上全路径,即类的包路径。

       5.7 修改Java代码,再执行相关步骤。

       通过以上步骤,mmoslg手游源码成功使用Java编写一个供Hive调用的函数。

mimikatz源码分析-lsadump模块(注册表)

       mimikatz是一款内网渗透中的强大工具,本文将深入分析其lsadump模块中的sam部分,探索如何从注册表获取用户哈希。

       首先,简要了解一下Windows注册表hive文件的结构。hive文件结构类似于PE文件,包括文件头和多个节区,每个节区又有节区头和巢室。其中,巢箱由HBASE_BLOCK表示,巢室由BIN和CELL表示,整体结构被称为“储巢”。通过分析hive文件的结构图,可以更直观地理解其内部组织。

       在解析过程中,需要关注的关键部分包括块的签名(regf)和节区的签名(hbin)。这些签名对于定位和解析注册表中的数据至关重要。

       接下来,深入解析mimikatz的解析流程。在具备sam文件和system文件的情况下,主要分为以下步骤:获取注册表system的句柄、读取计算机名和解密密钥、获取注册表sam的句柄以及读取用户名和用户哈希。若无sam文件和system文件,mimikatz将直接通过官方API读取本地机器的LALA图库php源码注册表。

       在mimikatz中,会定义几个关键结构体,包括用于标识操作的注册表对象和内容的结构体(PKULL_M_REGISTRY_HANDLE)以及注册表文件句柄结构体(HKULL_M_REGISTRY_HANDLE)。这些结构体包含了文件映射句柄、映射到调用进程地址空间的位置、巢箱的起始位置以及用于查找子键和子键值的键巢室。

       在获取注册表“句柄”后,接下来的任务是获取计算机名和解密密钥。密钥位于HKLM\SYSTEM\ControlSet\Current\Control\LSA,通过查找键值,将其转换为四个字节的密钥数据。利用这个密钥数据,mimikatz能够解析出最终的密钥。

       对于sam文件和system文件的操作,主要涉及文件映射到内存的过程,通过Windows API(CreateFileMapping和MapViewOfFile)实现。这些API使得mimikatz能够在不占用大量系统资源的情况下,方便地处理大文件。

       在获取了注册表系统和sam的句柄后,mimikatz会进一步解析注册表以获取计算机名和密钥。对于密钥的获取,mimikatz通过遍历注册表项,定位到特定的键值,并通过转换宽字符为字节序列,最终组装出密钥数据。

       接着,免费源码破解软件解析过程继续进行,获取用户名和用户哈希。在解析sam键时,mimikatz首先会获取SID,然后遍历HKLM\SAM\Domains\Account\Users,解析获取用户名及其对应的哈希。解析流程涉及多个步骤,包括定位samKey、获取用户名和用户哈希,以及使用samKey解密哈希数据。

       对于samKey的获取,mimikatz需要解密加密的数据,使用syskey作为解密密钥。解密过程根据加密算法(rc4或aes)有所不同,但在最终阶段,mimikatz会调用系统函数对数据进行解密,从而获取用户哈希。

       在完成用户哈希的解析后,mimikatz还提供了一个额外的功能:获取SupplementalCreds。这个功能可以解析并解密获取对应用户的SupplementalCredentials属性,包括明文密码及哈希值,为用户提供更全面的哈希信息。

       综上所述,mimikatz通过解析注册表,实现了从系统中获取用户哈希的高效功能,为内网渗透提供了强大的免费web源码app工具支持。通过深入理解其解析流程和关键结构体的定义,可以更好地掌握如何利用mimikatz进行深入的安全分析和取证工作。

Flink深入浅出:JDBC Connector源码分析

       大数据开发中,数据分析与报表制作是日常工作中最常遇到的任务。通常,我们通过读取Hive数据来进行计算,并将结果保存到数据库中,然后通过前端读取数据库来进行报表展示。然而,使用FlinkSQL可以简化这一过程,通过一个SQL语句即可完成整个ETL流程。

       在Flink中,读取Hive数据并将数据写入数据库是常见的需求。本文将重点讲解数据如何写入数据库的过程,包括刷写数据库的机制和原理。

       以下是本文将讲解的几个部分,以解答在使用过程中可能产生的疑问:

       1. 表的定义

       2. 定义的表如何找到具体的实现类(如何自定义第三方sink)

       3. 写入数据的机制原理

       (本篇基于1..0源码整理而成)

       1. 表的定义

       Flink官网提供了SQL中定义表的示例,以下以oracle为例:

       定义好这样的表后,就可以使用insert into student执行插入操作了。接下来,我们将探讨其中的技术细节。

       2. 如何找到实现类

       实际上,这一过程涉及到之前分享过的SPI(服务提供者接口),即DriverManager去寻找Driver的过程。在Flink SQL执行时,会通过translate方法将SQL语句转换为对应的Operation,例如insert into xxx中的xxx会转换为CatalogSinkModifyOperation。这个操作会获取表的信息,从而得到Table对象。如果这个Table对象是CatalogTable,则会进入TableFactoryService.find()方法找到对应的实现类。

       寻找实现类的过程就是SPI的过程。即通过查找路径下所有TableFactory.class的实现类,加载到内存中。这个SPI的定义位于resources下面的META-INFO下,定义接口以及实现类。

       加载到内存后,首先判断是否是TableFactory的实现类,然后检查必要的参数是否满足(如果不满足会抛出异常,很多人在第一次使用Flink SQL注册表时,都会遇到NoMatchingTableFactoryException异常,其实都是因为配置的属性不全或者Jar报不满足找不到对应的TableFactory实现类造成的)。

       找到对应的实现类后,调用对应的createTableSink方法就能创建具体的实现类了。

       3. 工厂模式+创建者模式,创建TableSink

       JDBCTableSourceSinkFactory是JDBC表的具体实现工厂,它实现了stream的sinkfactory。在1..0版本中,它不能在batch模式下使用,但在1.版本中据说会支持。这个类使用了经典的工厂模式,其中createStreamTableSink负责创建真正的Table,基于创建者模式构建JDBCUpsertTableSink。

       创建出TableSink之后,就可以使用Flink API,基于DataStream创建一个Sink,并配置对应的并行度。

       4. 消费数据写入数据库

       在消费数据的过程中,底层基于PreparedStatement进行批量提交。需要注意的是提交的时机和机制。

       控制刷写触发的最大数量 'connector.write.flush.max-rows' = ''

       控制定时刷写的时间 'connector.write.flush.interval' = '2s'

       这两个条件先到先触发,这两个参数都是可以通过with()属性配置的。

       JDBCUpsertFunction很简单,主要的工作是包装对应的Format,执行它的open和invoke方法。其中open负责开启连接,invoke方法负责消费每条数据提交。

       接下来,我们来看看关键的format.open()方法:

       接下来就是消费数据,执行提交了

       AppendWriter很简单,只是对PreparedStatement的封装而已

       5. 总结

       通过研究代码,我们应该了解了以下关键问题:

       1. JDBC Sink执行的机制,比如依赖哪些包?(flink-jdbc.jar,这个包提供了JDBCTableSinkFactory的实现)

       2. 如何找到对应的实现?基于SPI服务发现,扫描接口实现类,通过属性过滤,最终确定对应的实现类。

       3. 底层如何提交记录?目前只支持append模式,底层基于PreparedStatement的addbatch+executeBatch批量提交

       4. 数据写入数据库的时机和机制?一方面定时任务定时刷新,另一方面数量超过限制也会触发刷新。

       更多Flink内容参考:

beehive 源码阅读- go 语言的自动化机器

       beehive源码深入解析:Go语言中的自动化机器设计

       beehive的核心模块系统在包<p>bees</p>中体现其独特的解耦设计,这使得系统操作简便且易于扩展。只需要少量的学习,就能扩展自己的beehive功能。这里的"bee"代表Worker,执行具体任务,类似于采蜜的工蜂;而"hive"则是一个WorkerPool的工厂,通过简单配置(如一个token)即可创建针对特定任务的bee。

       "chain"是连接事件和处理的关键,它将事件(如博客更新)与响应(如发送邮件)关联起来,通过事件通道(eventChan)触发并执行相应的action。WebBee的实现展示了如何在Run方法中接收事件并唤醒相应的bee,同时ServeHTTP函数负责press"="gzip"。

5.5 内部表和外部表

       外部表使用external关键字和指定HDFS目录创建。

       内部表在创建时生成对应目录的文件夹,外部表以指定文件夹为数据源。

       内部表删除时删除整个文件夹,外部表仅删除元数据。

5.6 分区表和分桶表

       分区表按分区字段拆分存储,避免全表查询,提高效率。

       动态分区通过设置参数开启,根据字段值决定分区。

       分桶表依据分桶字段hash值分组拆分数据。

5.7 行转列和列转行

       行转列使用split、explode、laterview,列转行使用concat_ws、collect_list/set。

5.8 Hive时间函数

       from_unixtime、unix_timestamp、to_date、month、weekofyear、quarter、trunc、current_date、date_add、date_sub、datediff。

       时间戳支持转换和截断,标准格式为'yyyy-MM-dd HH:mm:ss'。

       month函数基于标准格式截断,识别时截取前7位。

5.9 Hive 排名函数

       row_number、dense_rank、rank。

5. Hive 分析函数:Ntile

       效果:排序并分桶。

       ntile(3) over(partition by A order by B)效果,可用于取前%数据统计。

5. Hive 拉链表更新

       实现方式和优化策略。

5. Hive 排序

       order by、order by limit、sort by、sort by limit的原理和应用场景。

5. Hive 调优

       减少distinct、优化map任务数量、并行度优化、小文件问题解决、存储格式和压缩格式设置。

5. Hive和Hbase区别

       Hive和Hbase的区别,Hive面向分析、高延迟、结构化,Hbase面向编程、低延迟、非结构化。

5. 其他

       用过的开窗函数、表join转换原理、sort by和order by的区别、交易表查询示例、登录用户数量查询、动态分区与静态分区的区别。

推荐资讯
strcpy实现源码

strcpy实现源码

gutmann源码

gutmann源码

jsbridge 源码

jsbridge 源码

PHPrpg源码

PHPrpg源码

匿名聊聊源码_匿名聊天源码

匿名聊聊源码_匿名聊天源码

tinker 源码

tinker 源码

copyright © 2016 powered by 皮皮网   sitemap