1.【解UE4源码】AI行为树系统 其二 一棵行为树是源码怎么被运行起来的
2.AI与PDE(七):AFNO模型的源代码解析
3.用AI生成了这些明星一生的样貌变化 | 附源码,很好玩
4.OpenAI/Triton MLIR 第零章: 源码编译
5.腾讯T2I-adapter源码分析(1)-运行源码跑训练
6.OpenAI 开源的源码免费 AI 语音转文字工具 - Whisper,一步一步本地部署运行
【解UE4源码】AI行为树系统 其二 一棵行为树是源码怎么被运行起来的
让我们深入理解UE4中AI行为树的运行机制。首先,源码行为树的源码运行流程大致分为以下几个步骤:发起执行: 可以通过AAIController::RunBehaviorTree()函数或Run Behavior任务节点启动新树。
抽象逻辑理解: 从Run Behavior任务节点出发,源码base64 c源码关键在于OwnerComp.PushInstance(*BehaviorAsset),源码这涉及子树的源码监控和结束条件。
检查与加载: 在运行前,源码UBehaviorTreeComponent会对子树资源、源码全局UBehaviorTreeManager、源码发起节点的源码父节点意愿进行检查。只有当所有条件满足,源码才会加载行为树资源。源码
内存计算与初始化: 加载后,源码通过FNodeInitializationData计算节点的执行顺序、内存需求,注入顶层decorator,然后设置初始值和内存偏移。
实例化与缓存: 将计算结果的树模板存入缓存,供后续使用。加载完成后,行为树实例会被添加到InstanceStack并标记为活跃。
新树加载并初始化完毕后,执行流程开始于根节点的服务调用和根节点的执行。每个节点的详细运行机制会在后续内容中进一步探讨。理解这些步骤有助于我们更好地掌握行为树的控制和执行逻辑。AI与PDE(七):AFNO模型的源代码解析
本文旨在解析AFNO模型的源代码,帮助读者理解模型细节与主干结构。首先,AFNO模型的主干框架在afnonet.py文件中定义,通过类AFNONet实现。模型的visual studio 编译源码核心功能封装在多个类与函数中,依据代码注释逐步解析。
在代码中,forward_features函数负责模型的核心逻辑,包括patch切割与mixing过程。这些操作由PatchEmbed类实现。位置编码self.pos_embed通过高斯初始化得到,增加模型的表示能力。
关键模块AFNO2d位于代码中,它基于FNO的原理,负责处理输入数据。AFNO2d模块在forward_features函数中通过循环调用,实现数据的转换与混合。
经过数个L layer处理后,模型进入类似解码器的结构,用于将中间结果映射为目标结果。这一过程通过self.head(x)实现,以解决特定分类问题。
本文通过梳理代码流程与结构图,直观展示了AFNO模型的工作原理。读者可参考AFNO的GitHub源代码与论文,深入理解细节。后续文章将继续探讨基于AFNO模型框架的其他应用,如FourCastNet。
用AI生成了这些明星一生的样貌变化 | 附源码,很好玩
这是来自斯坦福和华盛顿大学研究员的创新研究,他们提出了一种基于GAN(生成对抗网络)的新方法,仅需一张照片就能生成一个人从幼年到老年的样貌变化。
通过此论文(arxiv.org/abs/....),你可以了解这项技术的详细信息。同时,项目的源代码已开源,感兴趣的linux arp攻击源码开发者和研究者可以访问github.com/royorel/Life...获取更多资源。
使用此技术非常直观,以下是详细的步骤和说明:
首先,确保模型文件已经准备就绪。考虑到模型体积大且通过谷歌网盘下载可能遇到的问题,我已将文件打包并提供了以下链接供下载:
链接: pan.baidu.com/s/1Jwg-q9... 提取码: aicv
然后,直接运行我提供的demo.py代码即可开始体验。
在使用过程中,以下几点需要注意:
1. img_path = "t.jpg":请添加你希望生成样貌变化的人脸照片。确保照片为正脸照,这样生成的效果会更好。
2. opt.name = 'males_model':根据输入中人物的性别进行调整。男性使用males_model,女性则使用females_model。
3. 生成的结果将是一个MP4视频文件,保存路径在result文件夹内,并以照片的名称命名。
通过实际应用,我深感CV方向有许多有趣且实用的应用,例如模拟人物样貌变化。如果你对此技术感兴趣并想要亲自尝试,建议下载项目源代码并按照说明进行操作。如果你觉得结果令人满意,不妨为我点个赞以示鼓励。
OpenAI/Triton MLIR 第零章: 源码编译
本文旨在深入探讨开源AI项目OpenAI Triton MLIR,着重介绍Triton作为编程语言与编译器在GPU加速计算领域的应用与优化。Triton为用户提供了一种全新的方式,通过将其后端接入LLVM IR,利用NVPTX生成GPU代码,进而提升计算效率。相较于传统CUDA编程,Triton无需依赖NVIDIA的nvcc编译器,直接生成可运行的ios飞机大战源码机器代码,体现出其在深度学习与数据科学领域的高性能计算潜力。Triton不仅支持NVIDIA GPU,还计划扩展至AMD与Intel GPU,其设计基于MLIR框架,通过Dialect支持多样化后端。本文将从源码编译角度出发,逐步解析Triton的设计理念与优化策略,为研究编译技术和系统优化的工程师提供宝贵资源。
首先,需要访问Triton的官方网站,克隆其官方代码库,以便后续操作。构建过程涉及两个重要依赖:LLVM与pybind。LLVM作为Triton的核心后端,通过将高级Python代码逐步转换至LLVM IR,最终生成GPU可运行代码,体现了其在计算优化领域的优势。pybind组件则用于封装C++/CUDA或汇编代码,实现Python DSL与高性能组件的无缝集成。
接下来,将LLVM与pybind分别编译安装,通过手动配置指定路径,确保编译过程顺利进行。LLVM的安装对于基于Triton进行二次开发的工程师和研究人员至关重要,因为它为Triton提供了强大的计算基础。在特定的commit ID下编译Triton,确保与后续版本兼容。
在编译过程中,配置pybind同样至关重要,它允许用户通过Python API调用高性能组件,实现自动化生成高性能算子。完成编译后,德州扑克 源码下载生成的.so文件(libtriton.so)为后续Triton的Python接口提供了支持。
将libtriton.so移动至triton/python/triton/_C目录下,确保Python路径正确配置,实现无缝导入与调用。通过简单的import triton命令,即可开启Triton的开发之旅。验证Triton性能,可以选择tutorials目录下的示例代码,如-matrix-multiplication.py,通过运行该脚本,观察Triton在GPU上的性能表现。
Triton在NVGPU上的成熟映射路线,从抽象的Python DSL到贴近GPU层面的IR,最终生成高效机器代码,体现了其在高性能计算领域的优越性。Triton未来的发展蓝图将支持更多前端语言,对接不同硬件厂商的硬件,实现高效映射,满足多样化计算需求。
腾讯T2I-adapter源码分析(1)-运行源码跑训练
稳定扩散、midjourney等AI绘图技术,为人们带来了令人惊叹的效果,不禁让人感叹技术发展的日新月异。然而,AI绘图的可控性一直不是很好,通过prompt描述词来操控图像很难做到随心所欲。为了使AI绘制的图像更具可控性,Controlnet、T2I-adapter等技术应运而生。本系列文章将从T2I-adapter的源码出发,分析其实现方法。
本篇是第一篇,主要介绍源码的运行方法,后续两篇将以深度图为例,分别分析推理部分和训练部分的代码。分析T2I-Adapter,也是为了继续研究我一直在研究的课题:“AI生成同一人物不同动作”,例如:罗培羽:stable-diffusion生成同一人物不同动作的尝试(多姿势图),Controlnet、T2I-adapter给了我一些灵感,后续将进行尝试。
T2I-Adapter论文地址如下,它与controlnet类似,都是在原模型增加一个旁路,然后对推理结果求和。
T2I-Adapter和controlnet有两个主要的不同点,从图中可见,其一是在unet的编码阶段增加参数,而controlnet主要是解码阶段;其二是controlnet复制unit的上半部结构,而T2I-Adapter使用不同的模型结构。由于采用较小的模型,因此T2I-Adapter的模型较小,默认下占用M左右,而controlnet模型一般要5G空间。
首先确保机器上装有3.6版本以上python,然后把代码clone下来。随后安装依赖项,打开requirements.txt,可以看到依赖项的内容。然后下载示例,下载的会放到examples目录下。接着下载sd模型到model目录下,再下载T2I-Adapter的模型到目录下,模型可以按需到huggingface.co/TencentA...下载。这里我下载了depth和openpose。sd模型除了上述的v1-5,也还下载了sd-v1-4.ckpt。
根据文档,尝试运行一个由深度图生成的例子,下图的左侧是深度图,提示语是"desk, best quality, extremely detailed",右侧是生成出来的。运行过程比较艰辛,一开始在一台8G显存的服务器上跑,显存不够;重新搭环境在一台G显存的服务器上跑,还是不够;最后用一台G显存的服务器,终于运行起来了。
接下来尝试跑openpose的例子,下图左侧是骨架图,提示词为"Iron man, high-quality, high-res",右侧是生成的图像。
既然能跑推理,那么尝试跑训练。为了后续修改代码运行,目标是准备一点点数据把训练代码跑起来,至于训练的效果不是当前关注的。程序中也有训练的脚步,我们以训练深度图条件为例,来运行train_depth.py。
显然,习惯了,会有一些问题没法直接运行,需要先做两步工作。准备训练数据,分析代码,定位到ldm/data/dataset_depth.py,反推它的数据集结构,然后准备对应数据。先创建文件datasets/laion_depth_meta_v1.txt,用于存放数据文件的地址,由于只是测试,我就只添加两行。然后准备,图中的.png和.png是结果图,.depth.png和.depth.png是深度图,.txt和.txt是对应的文本描述。
文本描述如下,都只是为了把代码跑起来而做的简单设置。设置环境变量,由于T2I-Adapter使用多卡训练,显然我也没这个环境,因此要让它在单机上跑。而代码中也会获取一些环境变量,因此做简单的设置。
做好准备工作,可以运行程序了,出于硬件条件限制,只能把batch size设置为1。在A显卡跑了约8小时,完成,按默认的配置,模型保存experiments/train_depth/models/model_ad_.pth。那么,使用训练出来的模型试试效果,能生成如下(此处只是为了跑起来代码,用训练集来测试),验证了可以跑起来。
运行起来,但这还不够,我们还得看看代码是怎么写法,下一篇见。
PS:《直观理解AI博弈原理》是笔者写的一篇长文,从五子棋、象棋、围棋的AI演进讲起,从深度遍历、MAX-MIN剪枝再到蒙特卡罗树搜索,一步步介绍AI博弈的原理,而后引出强化学习方法,通俗易懂地介绍AlphaGo围棋、星际争霸强化学习AI、王者荣耀AI的一些强化学习要点,值得推荐。
AUTOMATIC的webui是近期很流行的stable-diffusion应用,它集合stable-diffusion各项常用功能,还通过扩展的形式支持controlnet、lora等技术,我们也分析了它的源码实现,写了一系列文章。
OpenAI 开源的免费 AI 语音转文字工具 - Whisper,一步一步本地部署运行
OpenAI 推出的开源免费工具 Whisper,以其出色的语音识别功能吸引了不少关注。这款模型不仅能够进行多语言的语音转文本,还能进行语音翻译和语言识别,实用价值极高。市面上许多语音转文字服务如讯飞语记等都收费,而Whisper作为开源选择,无疑是一个经济实惠且性能强大的解决方案。
想在本地体验Whisper,首先需要为Windows设备安装ffmpeg和rust。ffmpeg可以从ffmpeg.org下载并配置环境变量,而rust则可以从rust-lang.org获取并确保命令行可用。接着,创建一个python虚拟环境,安装Whisper所需的依赖库。
运行Whisper的过程相当直接。通过命令行,只需提供音频文件如"Haul.mp3",并指定使用"medium"模型(模型大小从tiny到large递增)。首次运行时,Whisper会自动下载并加载模型,然后开始识别并输出文本,同时将结果保存到文件中。如果想在Python代码中集成,也相当简单。
如果你对此技术感兴趣,不妨亲自尝试一下。项目的源代码可以在github.com/openai/whisper找到。这不仅是一次AI技术的体验,还可能开启语音转文字的新篇章。更多详情可参考gpt.com/article/的信息。
标签推荐:#AI技术 #OpenAI开源 #Whisper模型 #语音转文字 #ChatGPT应用
2024-11-23 07:04
2024-11-23 06:23
2024-11-23 06:04
2024-11-23 05:54
2024-11-23 05:13
2024-11-23 04:59