【淘宝weex源码】【火焰战法源码】【全屏烟花源码】predict 源码
1.如何在后台部署深度学习模型
2.chatglm2-2b+sdxl1.0+langchain打造私有AIGC(三)
3.论文源码实战轻量化MobileSAM,分割一切大模型出现,模型缩小60倍,速度提高40倍
如何在后台部署深度学习模型
搭建深度学习后台服务器我们的Keras深度学习REST API将能够批量处理图像,扩展到多台机器(包括多台web服务器和Redis实例),并在负载均衡器之后进行循环调度。淘宝weex源码
为此,我们将使用:
KerasRedis(内存数据结构存储)
Flask (Python的微web框架)
消息队列和消息代理编程范例
本篇文章的整体思路如下:
我们将首先简要讨论Redis数据存储,以及如何使用它促进消息队列和消息代理。然后,我们将通过安装所需的Python包来配置Python开发环境,以构建我们的Keras深度学习REST API。一旦配置了开发环境,就可以使用Flask web框架实现实际的Keras深度学习REST API。在实现之后,我们将启动Redis和Flask服务器,然后使用cURL和Python向我们的火焰战法源码深度学习API端点提交推理请求。最后,我们将以对构建自己的深度学习REST API时应该牢记的注意事项的简短讨论结束。
第一部分:简要介绍Redis如何作为REST API消息代理/消息队列
1:Redis可以用作我们深度学习REST API的消息代理/消息队列
Redis是内存中的数据存储。它不同于简单的键/值存储(比如memcached),因为它可以存储实际的数据结构。今天我们将使用Redis作为消息代理/消息队列。这包括:
在我们的机器上运行Redis
将数据(图像)按照队列的方式用Redis存储,并依次由我们的全屏烟花源码REST API处理
为新批输入图像循环访问Redis
对图像进行分类并将结果返回给客户端
文章中对Redis官网有一个超链接(bine_documents_chain`和`collapse_documents_chain`中的`llm_chain`替换为`Stream_Chain`类型。这样,当在`reduce`阶段调用`predict`方法时,能够直接调用`ChatGLM`类中的`_stream`方法实现流式响应。
综上所述,通过深入理解`langchain`框架的内部实现,并针对关键环节进行方法重写,我们成功实现了在不同场景下的流式响应需求,包括普通问答和长文本处理。黑色指标源码这些改进不仅提高了响应的实时性和效率,也为`langchain`框架的使用提供了更灵活和高效的方式。
论文源码实战轻量化MobileSAM,分割一切大模型出现,模型缩小倍,速度提高倍
MobileSAM是年发布的一款轻量化分割模型,对前代SAM模型进行了优化,模型体积减小倍,筷团源码运行速度提升倍,同时保持了良好的分割性能。MobileSAM的使用方式与SAM兼容,几乎无缝对接,唯一的调整是在模型加载时需稍作修改。
在环境配置方面,创建专属环境并激活,安装Pytorch,实现代码测试。
网页版使用中,直接在网页界面进行分割操作,展示了一些分割效果。
提供了Predictor方法示例,包括点模式、单点与多点分割,以及前景和背景通过方框得到掩码的实现。此外,SamAutomaticMaskGenerator方法用于一键全景分割。
关于模型转换和推理,讲解了将SAM模型转换为ONNX格式,包括量化ONNX模型的使用方法。在ONNX推理中,输入签名与SamPredictor.predict不同,需要特别注意输入格式。
总结部分指出,MobileSAM在体积与速度上的显著提升,以及与SAM相当的分割效果,对于视觉大模型在移动端的应用具有重要价值。
附赠MobileSAM相关资源,包括代码、论文、预训练模型及使用示例,供需要的开发者交流研究。
欢迎关注公众号@AI算法与电子竞赛,获取资源。
无限可能,少年们,加油!