【强势起爆龙头公式源码】【四线平衡指标源码】【扒下来的源码怎么用】编译pytorch源码_pytorch 源码编译
1.[技术随笔]🛠🛠从源码安装Pytorch3D详细记录及学习资料
2.Pytorch之Dataparallel源码解析
3.PyTorch 源码分析(三):torch.nn.Norm类算子
4.PyTorch 源码分析(一):torch.nn.Module
5.Pytorch nn.Module接口及源码分析
6.PyTorch 源码解读之 torch.utils.data:解析数据处理全流程
[技术随笔]🛠🛠从源码安装Pytorch3D详细记录及学习资料
这篇文章详细介绍了如何从源码安装Pytorch3D,编译编译包括选择合适的源源码镜像、配置工具和编译步骤。编译编译首先,源源码选择Pytorch 1.9的编译编译devel镜像,包含CUDA和驱动,源源码强势起爆龙头公式源码确保与Pytorch3D的编译编译版本要求相匹配,比如Python 3.7和CUDA .2。源源码在镜像内,编译编译需要检查nvcc编译器、源源码CUDA工具箱和驱动是编译编译否正常,同时安装基本工具如git、源源码vim、编译编译sudo和curl。源源码
配置CUB工具是编译编译关键步骤,根据Pytorch3D文档,需要在编译前设置CUB_HOME。即使Pytorch镜像自带CUDA,也建议手动设置`FORCE_CUDA`为1以确保兼容。接着,如果遇到conda依赖问题,作者选择从源码编译Pytorch3D,编译过程中的安装log和版本检查是必要的。
最后,通过测试用例,四线平衡指标源码如从ARkit导出数据并渲染白模,验证GPU的使用。结果显示GPU正常工作,安装成功。对于更深入的Pytorch3D使用,作者还分享了一些参考资源,以便初学者入门。
Pytorch之Dataparallel源码解析
深入解析Pytorch之Dataparallel源码
在深入理解Dataparallel原理之前,需要明白它的使用场景和目的。Dataparallel设计用于在多GPU环境下并行处理数据,提高模型训练效率。
初始化阶段,Dataparallel需要实例化一个模型。这一步中,模型的参数会被复制到所有可用的GPU上,从而实现并行计算。
在前向传播阶段,Dataparallel的核心作用体现出来。它会将输入数据分割成多个小批次,然后分别发送到各个GPU上。在每个GPU上执行前向传播操作后,结果会被收集并汇总。这样,即便模型在多GPU上运行,扒下来的源码怎么用输出结果也如同在单GPU上运行一样。
具体实现中,Dataparallel会利用Python的多重继承和数据并行策略。它继承自nn.Module,同时调用nn.DataParallel的构造函数,从而实现并行计算。
对于那些需要在GPU间共享的状态或变量,Dataparallel还提供了相应的管理机制,确保数据的一致性和计算的正确性。这样的设计使得模型能够高效地在多GPU环境下运行,同时保持代码的简洁性和易读性。
总结而言,Dataparallel通过分割数据、并行执行前向传播和收集结果的机制,实现了高效的数据并行训练。理解其源码有助于开发者更好地利用多GPU资源,提升模型训练效率。
PyTorch 源码分析(三):torch.nn.Norm类算子
PyTorch源码详解(三):torch.nn.Norm类算子深入解析
Norm类算子在PyTorch中扮演着关键角色,它们包括BN(BatchNorm)、LayerNorm和InstanceNorm。1. BN/LayerNorm/InstanceNorm详解
BatchNorm(BN)的核心功能是对每个通道(C通道)的数据进行标准化,确保数据在每个批次后保持一致的尺度。它通过学习得到的gamma和beta参数进行缩放和平移,保持输入和输出形状一致,解释型语言源码不加密同时让数据分布更加稳定。 gamma和beta作为动态调整权重的参数,它们在BN的学习过程中起到至关重要的作用。2. Norm算子源码分析
继承关系:Norm类在PyTorch中具有清晰的继承结构,子类如BatchNorm和InstanceNorm分别继承了其特有的功能。
BN与InstanceNorm实现:在Python代码中,BatchNorm和InstanceNorm的实例化和计算逻辑都包含对输入数据的2D转换,即将其分割为M*N的矩阵。
计算过程:在计算过程中,首先计算每个通道的均值和方差,这是这些标准化方法的基础步骤。
C++侧的源码洞察
C++实现中,对于BatchNorm和LayerNorm,代码着重于处理数据的标准化操作,同时确保线程安全,通过高效的数据视图和线程视图处理来提高性能。PyTorch 源码分析(一):torch.nn.Module
nn.Module是PyTorch中最核心和基础的结构,它是操作符/损失函数的基类,同时也是组成各种网络结构的基类(实际上是由多个module组合而成的一个module)。
在Python侧,2.1回调函数注册,2.2 module类定义中,有以下几个重点函数:
重点函数一:将模型的参数移动到CUDA上,内部会遍历其子module。会议预约管理系统源码错误
重点函数二:将模型的参数移动到CPU上,内部会遍历其子module。
重点函数三:将模型的参数转化为fp或者fp等,内部会遍历其子module。
重点函数四:forward函数调用。
重点函数五:返回该net的所有layer。
在类图中,PyTorch的算子都是module的子类,包括自定义算子和整网定义。
在C++侧,3.1 module.to("cuda")详细分析中,本质是将module的parameter&buffer等tensor移动到CUDA上,最终调用的是tensor.to(cuda)。
3.2 module.load/save逻辑中,PyTorch模型保存分为两种,一种是纯参数,一种是带模型结构(PyTorch中的模型结构,本质上是由module、sub-module构造的一个计算图)。
parameter、buffer是通过key-value的形式来存储和检索的,key为module的.name,value为存储具体数据的tensor。
InputArchive/OutputArchive的write和read逻辑。
通过Module,PyTorch将op/loss/opt等串联起来,类似于一个计算图。基于PyTorch构建的ResNet等模型,是逐个算子进行计算的,tensor在CPU和GPU之间来回流动,而不是整个计算都在GPU上完成(即中间计算结果不出GPU)。实际上,在进行推理时,可以构建一个计算图,让整个计算图的计算都在GPU上完成,不知道是否可行(如果GPU上有一个CPU就可以完成这个操作,不知道tensorrt是否是这样的操作)。
Pytorch nn.Module接口及源码分析
本文旨在介绍并解析Pytorch中的torch.nn.Module模块,它是构建和记录神经网络模型的基础。通过理解和掌握torch.nn.Module的作用、常用API及其使用方法,开发者能够构建更高效、灵活的神经网络架构。
torch.nn.Module主要作用在于提供一个基类,用于创建神经网络中的所有模块。它支持模块的树状结构构建,允许开发者在其中嵌套其他模块。通过继承torch.nn.Module,开发者可以自定义功能模块,如卷积层、池化层等,这些模块的前向行为在`forward()`方法中定义。例如:
python
import torch.nn as nn
class SimpleModel(nn.Module):
def __init__(self):
super(SimpleModel, self).__init__()
self.conv1 = nn.Conv2d(in_channels=3, out_channels=6, kernel_size=3)
self.conv2 = nn.Conv2d(in_channels=6, out_channels=, kernel_size=3)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
return x
torch.nn.Module还提供了多种API,包括类变量、重要概念(如parameters和buffer)、数据类型和设备类型转换、hooks等。这些API使开发者能够灵活地控制和操作模型的状态。
例如,可以通过requires_grad_()方法设置模块参数的梯度追踪,这对于训练过程至关重要。使用zero_grad()方法清空梯度,有助于在反向传播后初始化梯度。`state_dict()`方法用于获取模型状态字典,常用于模型的保存和加载。
此外,_apply()方法用于执行自定义操作,如类型转换或设备迁移。通过__setattr__()方法,开发者可以方便地修改模块的参数、缓存和其他属性。
总结而言,torch.nn.Module是Pytorch中构建神经网络模型的核心组件,它提供了丰富的API和功能,支持开发者创建复杂、高效的神经网络架构。通过深入理解这些API和方法,开发者能够更高效地实现各种深度学习任务。
PyTorch 源码解读之 torch.utils.data:解析数据处理全流程
文@ 目录 0 前言 1 Dataset 1.1 Map-style dataset 1.2 Iterable-style dataset 1.3 其他 dataset 2 Sampler 3 DataLoader 3.1 三者关系 (Dataset, Sampler, Dataloader) 3.2 批处理 3.2.1 自动批处理(默认) 3.2.2 关闭自动批处理 3.2.3 collate_fn 3.3 多进程处理 (multi-process) 4 单进程 5 多进程 6 锁页内存 (Memory Pinning) 7 预取 (prefetch) 8 代码讲解 0 前言 本文以 PyTorch 1.7 版本为例,解析 torch.utils.data 模块在数据处理流程中的应用。 理解 Python 中的迭代器是解读 PyTorch 数据处理逻辑的关键。Dataset、Sampler 和 DataLoader 三者共同构建数据处理流程。 迭代器通过实现 __iter__() 和 __next__() 方法,支持数据的循环访问。Dataset 提供数据获取接口,Sampler 控制遍历顺序,DataLoader 负责加载和批处理数据。 1 Dataset Dataset 包括 Map-style 和 Iterable-style 两种,分别用于索引访问和迭代访问数据。 Map-style dataset 通过实现 __getitem__() 和 __len__() 方法,支持通过索引获取数据。 Iterable-style dataset 实现 __iter__() 方法,适用于随机访问且批次大小依赖于获取数据的场景。 2 Sampler Sampler 用于定义数据遍历的顺序,支持用户自定义和 PyTorch 提供的内置实现。 3 DataLoader DataLoader 是数据加载的核心,支持 Map-style 和 Iterable-style Dataset,提供单多进程处理和批处理等功能。 通过参数配置,如 batch_size、drop_last、collate_fn 等,DataLoader 实现了数据的自动和手动批处理。 4 批处理 3.2.1 自动批处理(默认) DataLoader 默认使用自动批处理,通过参数控制批次生成和样本整理。 3.2.2 关闭自动批处理 关闭自动批处理,允许用户自定义批处理逻辑或处理单个样本。 3.2.3 collate_fn collate_fn 是手动批处理时的关键,用于整理单个样本为批次。 5 多进程 多进程处理通过 num_workers 参数启用,加速数据加载。 6 单进程 单进程模式下,数据加载可能影响计算流程,适用于数据量小且无需多进程的场景。 7 锁页内存 (Memory Pinning) Memory Pinning 技术确保数据在 GPU 加速过程中快速传输,提高性能。 8 代码讲解 通过具体代码分析,展示了 DataLoader 的初始化、迭代和数据获取过程,涉及迭代器、Sampler 和 Dataset 的交互。pytorch 源码解读进阶版 - 当你 import torch 的时候,你都干了些什么?(施工中)
使用PyTorch,无论是训练还是预测,你首先编写的代码通常如下所示:
依据Python代码的编写规则,导入逻辑将去相应的PyTorch site-package目录寻找__init__.py文件,具体路径为:${ python_path}/lib/python3.8/site-packages/torch/__init__.py
本章节聚焦于__init__.py 这个Python文件,从这里开始深入剖析,探究在一行简单的`import torch`命令背后,PyTorch是如何完成关键基础设置的初始化。
重点一:从`from torch._C import *`开始
在__init__.py 中,首先跳过一些系统环境的检查和判断逻辑,核心代码段为`from torch._C import *`,具体位置如下(github.com/pytorch/pytorch...):
这代表了典型的C++共享库初始化过程,遵循CPython代码组织规则,`torch._C`模块对应一个名为PyInit__C的函数。在文件torch/csrc/stub.c中,找到了此函数的相关定义(github.com/pytorch/pytorch...)。
initModule被视为PyTorch初始化过程中的第一层调用栈,深入探讨此函数中的关键内容。