1.spark sql源码系列 | json_tuple一定比 get_json_object更高效吗?
2.为ä»ä¹sparkSQL
3.Hive Server2对execute和executeQuery的源码处理
4.SPARK-38864 - Spark支持unpivot源码分析
spark sql源码系列 | json_tuple一定比 get_json_object更高效吗?
对比json_tuple和get_json_object,网上普遍认为json_tuple效率更高。解析理由是源码json_tuple仅需解析一次json数据,而get_json_object需多次解析。解析实际操作中,源码get_json_object在解析json字符串到jsonObject阶段仅执行一次,解析源码水印而非多次解析。源码从执行计划角度看,解析get_json_object更为简洁,源码而json_tuple涉及udtf函数,解析其执行计划更为繁重。源码功能多样性上,解析get_json_object支持更丰富的源码选股源码如何导入路径处理,如正则匹配、解析嵌套、源码多层取值等,而json_tuple仅能解析第一层key。在实际使用时,无需盲从效率结论,根据具体需求选择。确保json数据不过长过大,无论使用哪种方法,效率都不会理想。正确理解并合理运用这些函数,对于优化查询性能至关重要。手机链接定位源码
为ä»ä¹sparkSQL
SharkåsparkSQL ä½æ¯ï¼éçSparkçåå±ï¼å ¶ä¸sparkSQLä½ä¸ºSparkçæçä¸å继ç»åå±ï¼èä¸ååéäºhiveï¼åªæ¯å ¼å®¹hiveï¼èhive on sparkæ¯ä¸ä¸ªhiveçåå±è®¡åï¼è¯¥è®¡åå°sparkä½ä¸ºhiveçåºå±å¼æä¹ä¸ï¼ä¹å°±æ¯è¯´ï¼hiveå°ä¸ååéäºä¸ä¸ªå¼æï¼å¯ä»¥éç¨map-reduceãTezãsparkçå¼æã
ããShark为äºå®ç°Hiveå ¼å®¹ï¼å¨HQLæ¹é¢éç¨äºHiveä¸HQLç解æãé»è¾æ§è¡è®¡åç¿»è¯ãæ§è¡è®¡åä¼åçé»è¾ï¼å¯ä»¥è¿ä¼¼è®¤ä¸ºä» å°ç©çæ§è¡è®¡åä»MRä½ä¸æ¿æ¢æäºSparkä½ä¸ï¼è¾ 以å ååå¼åå¨çåç§åHiveå ³ç³»ä¸å¤§çä¼åï¼ï¼åæ¶è¿ä¾èµHive MetastoreåHive SerDeï¼ç¨äºå ¼å®¹ç°æçåç§Hiveåå¨æ ¼å¼ï¼ãè¿ä¸çç¥å¯¼è´äºä¸¤ä¸ªé®é¢ï¼ç¬¬ä¸æ¯æ§è¡è®¡åä¼åå®å ¨ä¾èµäºHiveï¼ä¸æ¹ä¾¿æ·»å æ°çä¼åçç¥ï¼äºæ¯å 为MRæ¯è¿ç¨çº§å¹¶è¡ï¼å代ç çæ¶åä¸æ¯å¾æ³¨æ线ç¨å®å ¨é®é¢ï¼å¯¼è´Sharkä¸å¾ä¸ä½¿ç¨å¦å¤ä¸å¥ç¬ç«ç»´æ¤çæäºè¡¥ä¸çHiveæºç åæ¯ï¼è³äºä¸ºä½ç¸å ³ä¿®æ¹æ²¡æå并å°Hive主线ï¼æä¹ä¸å¤ªæ¸ æ¥ï¼ã
ããæ¤å¤ï¼é¤äºå ¼å®¹HQLãå éç°æHiveæ°æ®çæ¥è¯¢åæ以å¤ï¼Spark SQLè¿æ¯æç´æ¥å¯¹åçRDD对象è¿è¡å ³ç³»æ¥è¯¢ãåæ¶ï¼é¤äºHQL以å¤ï¼Spark SQLè¿å 建äºä¸ä¸ªç²¾ç®çSQL parserï¼ä»¥åä¸å¥Scala DSLãä¹å°±æ¯è¯´ï¼å¦æåªæ¯ä½¿ç¨Spark SQLå 建çSQLæ¹è¨æScala DSL对åçRDD对象è¿è¡å ³ç³»æ¥è¯¢ï¼ç¨æ·å¨å¼åSparkåºç¨æ¶å®å ¨ä¸éè¦ä¾èµHiveçä»»ä½ä¸è¥¿ã
Hive Server2对execute和executeQuery的处理
实现SparkSQL的SQL Server服务时,需兼容Hive的JDBC Driver,以便通过beeline连接服务。Java的JDBC标准提供execute和executeQuery两类接口。execute用于DDL(数据定义语言)操作,返回true/false,而executeQuery则处理查询,返回ResultSet结果集。
在thrift接口实现中,对DDL操作,直接将结果置空并设置setHasResultSet为false。然而,爬虫无法爬取源码beeline客户端始终显示错误,因为其使用了beeline的JDBC驱动。通过源码调试发现,在Hive的JDBC实现中,executeQuery直接调用execute。如果返回false,则抛出异常:The query did not generate a result set!
在执行SQL后,beeline客户端会通过GetOperationStatus获取操作状态。在类似while true的循环中,直到操作结束,开始获取结果集。关键在于,红警1源码是什么如果isHasResultSet为false,execute会直接抛出异常。因此,isHasResultSet必须返回true,后端在封装thrift结果集时,需调整逻辑。
通常,设置setHasResultSet为false且设置setHasResultSetIsSet为true即可。但实践中发现,两者关联影响结果。最终解决方案是,对无结果集的DDL执行,手动生成相应返回。
Hive在处理execute和executeQuery时,存在实现上的不完美之处。
SPARK- - Spark支持unpivot源码分析
unpivot是数据库系统中用于列转行的内置函数,如SQL SERVER, Oracle等。以数据集tb1为例,每个数字代表某个人在某个学科的成绩。若要将此表扩展为三元组,可使用union实现。但随列数增加,SQL语句变长。许多SQL引擎提供内置函数unpivot简化此过程。unpivot使用时需指定保留列、进行转行的列、新列名及值列名。
SPARK从SPARK-版本开始支持DataSet的unpivot函数,逐步扩展至pyspark与SQL。在Dataset API中,ids为要保留的Column数组,Column类提供了从String构造Column的隐式转换,方便使用。利用此API,可通过unpivot函数将数据集转换为所需的三元组。values表示转行列,variableColumnName为新列名,valueColumnName为值列名。
Analyser阶段解析unpivot算子,将逻辑执行计划转化为物理执行计划。当用户开启hive catalog,SPARK SQL根据表名和metastore URL查找表元数据,转化为Hive相关逻辑执行计划。物理执行计划如BroadcastHashJoinExec,表示具体的执行策略。规则ResolveUnpivot将包含unpivot的算子转换为Expand算子,在物理执行计划阶段执行。此转换由开发者自定义规则完成,通过遍历逻辑执行计划树,根据节点类型及状态进行不同处理。
unpivot函数实现过程中,首先将原始数据集投影为包含ids、variableColumnName、valueColumnName的列,实现语义转换。随后,通过map函数处理values列,构建新的行数据,最终返回Expand算子。在物理执行计划阶段,Expand算子将数据转换为所需形式,实现unpivot功能。
综上所述,SPARK内置函数unpivot的实现通过解析列参数,组装Expand算子完成,为用户提供简便的列转行功能。通过理解此过程,可深入掌握SPARK SQL的开发原理与内在机制。