本站提倡有节制游戏,合理安排游戏时间,注意劳逸结合。

【收益app源码】【头像插件源码】【红旗系统源码】golang 游戏源码_golang游戏源码

2025-01-19 17:06:48 来源:焦点 分类:焦点

1.基于 Golang 实现的游戏源码游戏源码 Shadowsocks 源码解析
2.golang map 源码解读(8问)
3.Golang源码剖析panic与recover,看不懂你打我好了
4.golang源码系列---手把手带你看list实现
5.golang的游戏源码游戏源码对象池sync.pool源码解读
6.golang源码系列---手把手带你看heap实现

golang 游戏源码_golang游戏源码

基于 Golang 实现的 Shadowsocks 源码解析

       本教程旨在解析基于Golang实现的Shadowsocks源码,帮助大家理解如何通过Golang实现一个隧道代理转发工具。游戏源码游戏源码首先,游戏源码游戏源码让我们从代理和隧道的游戏源码游戏源码概念入手。

       代理(Proxy)是游戏源码游戏源码收益app源码一种网络服务,允许客户端通过它与服务器进行非直接连接。游戏源码游戏源码代理服务器在客户端与服务器之间充当中转站,游戏源码游戏源码可以提供隐私保护或安全防护。游戏源码游戏源码隧道(Tunnel)则是游戏源码游戏源码一种网络通讯协议,允许在不兼容网络之间传输数据或在不安全网络上创建安全路径。游戏源码游戏源码

       实验环境要求搭建从本地到远程服务器的游戏源码游戏源码隧道代理,实现客户端访问远程内容。游戏源码游戏源码基本开发环境需包括目标网络架构。游戏源码游戏源码实验目的游戏源码游戏源码为搭建隧道代理,使客户端能够访问到指定远程服务器的内容。

       Shadowsocks通过TCP隧道代理实现,涉及客户端和服务端关键代码分析。

       客户端处理数据流时,监听本地代理地址,接收数据流并根据配置文件获取目的端IP,将此IP写入数据流中供服务端识别。

       服务端接收请求,向目的地址发送流量。目的端IP通过特定函数解析,实现数据流的接收与识别。

       数据流转发利用io.Copy()函数实现,阻塞式读取源流数据并复制至目标流。此过程可能引入阻塞问题,通过使用协程解决。

       解析源码可学习到以下技术点:

       1. 目的端IP写入数据流机制。

       2. Golang中io.Copy()函数实现数据流转发。

       3. 使用协程避免阻塞式函数影响程序运行效率。

       4. sync.WaitGroup优化并行任务执行。

       希望本文能为你的学习之旅提供指导,欢迎关注公众号获取更多技术分析内容。

golang map 源码解读(8问)

       map底层数据结构为hmap,包含以下几个关键部分:

       1. buckets - 指向桶数组的指针,存储键值对。

       2. count - 记录key的数量。

       3. B - 桶的数量的对数值,用于计算增量扩容。

       4. noverflow - 溢出桶的数量,用于等量扩容。

       5. hash0 - hash随机值,头像插件源码增加hash值的随机性,减少碰撞。

       6. oldbuckets - 扩容过程中的旧桶指针,判断桶是否在扩容中。

       7. nevacuate - 扩容进度值,小于此值的已经完成扩容。

       8. flags - 标记位,用于迭代或写操作时检测并发场景。

       每个桶数据结构bmap包含8个key和8个value,以及8个tophash值,用于第一次比对。

       overflow指向下一个桶,桶与桶形成链表存储key-value。

       结构示意图在此。

       map的初始化分为3种,具体调用的函数根据map的初始长度确定:

       1. makemap_small - 当长度不大于8时,只创建hmap,不初始化buckets。

       2. makemap - 当长度参数为int时,底层调用makemap。

       3. makemap - 初始化hash0,计算对数B,并初始化buckets。

       map查询底层调用mapaccess1或mapaccess2,前者无key是否存在的bool值,后者有。

       查询过程:计算key的hash值,与低B位取&确定桶位置,获取tophash值,比对tophash,相同则比对key,获得value,否则继续寻找,直至返回0值。

       map新增调用mapassign,步骤包括计算hash值,确定桶位置,比对tophash和key值,插入元素。

       map的扩容有两种情况:当count/B大于6.5时进行增量扩容,容量翻倍,渐进式完成,每次最多2个bucket;当count/B小于6.5且noverflow大于时进行等量扩容,容量不变,红旗系统源码但分配新bucket数组。

       map删除元素通过mapdelete实现,查找key,计算hash,找到桶,遍历元素比对tophash和key,找到后置key,value为nil,修改tophash为1。

       map遍历是无序的,依赖mapiterinit和mapiternext,选择一个bucket和offset进行随机遍历。

       在迭代过程中,可以通过修改元素的key,value为nil,设置tophash为1来删除元素,不会影响遍历的顺序。

Golang源码剖析panic与recover,看不懂你打我好了

       哈喽,大家好,我是asong,今天与大家来聊一聊go语言中的"throw、try.....catch{ }"。如果你之前是一名java程序员,我相信你一定吐槽过go语言错误处理方式,但是这篇文章不是来讨论好坏的,我们本文的重点是带着大家看一看panic与recover是如何实现的。上一文我们讲解了defer是如何实现的,但是没有讲解与defer紧密相连的recover,想搞懂panic与recover的实现也没那么简单,就放到这一篇来讲解了。废话不多说,直接开整。

       Go 语言中panic 关键字主要用于主动抛出异常,类似 java 等语言中的 throw 关键字。panic 能够改变程序的控制流,调用 panic 后会立刻停止执行当前函数的剩余代码,并在当前 Goroutine 中递归执行调用方的 defer;

       Go 语言中recover 关键字主要用于捕获异常,让程序回到正常状态,类似 java 等语言中的 try ... catch 。recover 可以中止 panic 造成的程序崩溃。它是一个只能在 defer 中发挥作用的函数,在其他作用域中调用不会发挥作用;

       recover只能在defer中使用这个在标准库的注释中已经写明白了,我们可以看一下:

       这里有一个要注意的点就是recover必须要要在defer函数中使用,否则无法阻止panic。最好的矩阵算法源码验证方法是先写两个例子:

       运行我们会发现example2()方法的panic是没有被recover住的,导致整个程序直接crash了。这里大家肯定会有疑问,为什么直接写recover()就不能阻止panic了呢。我们在 详解defer实现机制(附上三道面试题,我不信你们都能做对)讲解了defer实现原理,一个重要的知识点**defer将语句放入到栈中时,也会将相关的值拷贝同时入栈。**所以defer recover()这种写法在放入defer栈中时就已经被执行过了,panic是发生在之后,所以根本无法阻止住panic。

       通过运行结果可以看出panic不会影响defer函数的使用,所以他是安全的。

       这里我开了两个协程,一个协程会发生panic,导致程序崩溃,但是只会执行自己所在Goroutine的延迟函数,所以正好验证了多个 Goroutine 之间没有太多的关联,一个 Goroutine 在 panic 时也不应该执行其他 Goroutine 的延迟函数。

       其实我们在实际项目开发中,经常会遇到panic问题, Go 的 runtime 代码中很多地方都调用了 panic 函数,对于不了解 Go 底层实现的新人来说,这无疑是挖了一堆深坑。我们在实际生产环境中总会出现panic,但是我们的程序仍能正常运行,这是因为我们的框架已经做了recover,他已经为我们兜住底,比如gin,我们看一看他是怎么做的。

       我们先来写个简单的代码,看看他的汇编调用:执行go tool compile -N -l -S main.go就可以看到对应的汇编码了,我们截取部分片段分析:

       上面重点部分就是画红线的三处,第一步调用runtime.deferprocStack创建defer对象,这一步大家可能会有疑惑,我上一文忘记讲个这个了,这里先简单概括一下,defer总共有三种模型,编译一个函数里只会有一种defer模式。在讲defer实现机制时,我们一起看过defer的结构,其中有一个字段就是_panic,是触发defer的作用,我们来看看的panic的结构:

       简单介绍一下上面的字段:

       上面的pc、sp、cci最佳源码goexit我们单独讲一下,runtime包中有一个Goexit方法,Goext能够终止调用它的goroutine,其他的goroutine是不受影响的,goexit也会在终止goroutine之前运行所有延迟调用函数,Goexit不是一个panic,所以这些延迟函数中的任何recover调用都将返回nil。如果我们在主函数中调用了Goexit会终止该goroutine但不会返回func main。由于func main没有返回,因此程序将继续执行其他gorountine,直到所有其他goroutine退出,程序才会crash。

       下面就开始我们的重点吧~。

       在讲defer实现机制时,我们一起看过defer的结构,其中有一个字段就是_panic,是触发defer的作用,我们来看看的panic的结构:简单介绍一下上面的字段:上面的pc、sp、goexit我们单独讲一下,runtime包中有一个Goexit方法,Goext能够终止调用它的goroutine,其他的goroutine是不受影响的,goexit也会在终止goroutine之前运行所有延迟调用函数,Goexit不是一个panic,所以这些延迟函数中的任何recover调用都将返回nil。如果我们在主函数中调用了Goexit会终止该goroutine但不会返回func main。由于func main没有返回,因此程序将继续执行其他gorountine,直到所有其他goroutine退出,程序才会crash。写个简单的例子:运行上面的例子你就会发现,即使在主goroutine中调用了runtime.Goexit,其他goroutine是没有任何影响的。所以结构中的pc、sp、goexit三个字段都是为了修复runtime.Goexit,这三个字段就是为了保证该函数的一定会生效,因为如果在defer中发生panic,那么goexit函数就会被取消,所以才有了这三个字段做保护。看这个例子:

       英语好的可以看一看这个: github.com/golang/go/is...,这就是上面的一个例子,这里就不过多解释了,了解就好。

       接下来我们再来看一看gopanic方法。

       gopanic的代码有点长,我们一点一点来分析:

       根据不同的类型判断当前发生panic错误,这里没什么多说的,接着往下看。

       上面的代码都是截段,这些部分都是为了判断当前defer是否可以使用开发编码模式,具体怎么操作的就不展开了。

       在第三部分进行defer内联优化选择时会执行调用延迟函数(reflectcall就是这个作用),也就是会调用runtime.gorecover把recoverd = true,具体这个函数的操作留在下面讲,因为runtime.gorecover函数并不包含恢复程序的逻辑,程序的恢复是在gopanic中执行的。先看一下代码:

       这段代码有点长,主要就是分为两部分:

       第一部分主要是这个判断if gp._panic != nil && gp._panic.goexit && gp._panic.aborted { ... },正常recover是会绕过Goexit的,所以为了解决这个,添加了这个判断,这样就可以保证Goexit也会被recover住,这里是通过从runtime._panic中取出了程序计数器pc和栈指针sp并且调用runtime.recovery函数触发goroutine的调度,调度之前会准备好 sp、pc 以及函数的返回值。

       第二部分主要是做panic的recover,这也与上面的流程基本差不多,他是从runtime._defer中取出了程序计数器pc和栈指针sp并调用recovery函数触发Goroutine,跳转到recovery函数是通过runtime.call进行的,我们看一下其源码(src/runtime/asm_amd.s 行):

       因为go语言中的runtime环境是有自己的堆栈和goroutine,recovery函数也是在runtime环境执行的,所以要调度到m->g0来执行recovery函数,我们在看一下recovery函数:

       在recovery 函数中,利用 g 中的两个状态码回溯栈指针 sp 并恢复程序计数器 pc 到调度器中,并调用 gogo 重新调度 g , goroutine 继续执行,recovery在调度过程中会将函数的返回值设置为1。这个有什么作用呢? 在deferproc函数中找到了答案:

       当延迟函数中recover了一个panic时,就会返回1,当 runtime.deferproc 函数的返回值是 1 时,编译器生成的代码会直接跳转到调用方函数返回之前并执行 runtime.deferreturn,跳转到runtime.deferturn函数之后,程序就已经从panic恢复了正常的逻辑。

       在这里runtime.fatalpanic实现了无法被恢复的程序崩溃,它在中止程序之前会通过 runtime.printpanics 打印出全部的 panic 消息以及调用时传入的参数。

       这就是这个逻辑流程,累死我了。。。。

       结尾给大家发一个小福利,哈哈,这个福利就是如果避免出现panic,要注意这些:这几个是比较典型的,还有很多会发生panic的地方,交给你们自行学习吧~。

       好啦,这篇文章就到这里啦,素质三连(分享、点赞、在看)都是笔者持续创作更多优质内容的动力!

golang源码系列---手把手带你看list实现

       本文提供Golang源码中双向链表实现的详细解析。

       双向链表结构包含头节点对象root和链表长度,无需遍历获取长度,链表节点额外设指针指向链表,方便信息获取。

       创建双向链表使用`list.New`函数,初始化链表。

       `Init`方法可初始化或清空链表,链表结构内含占位头结点。

       `Len`方法返回链表长度,由结构体字段存储,无需遍历。

       `Front`与`Back`分别获取头结点和尾结点。

       `InsertBefore`与`InsertAfter`方法在指定节点前后插入新节点,底层调用`insertValue`实现。

       `PushFront`与`PushBack`方法分别在链表头部和尾部插入新节点。

       `MoveToBack`与`MoveToFront`内部调用`move`方法,将节点移动至特定位置。

       `MoveBefore`与`MoveAfter`将节点移动至指定节点前后。

       `PushBackList`与`PushFrontList`方法分别在链表尾部或头部插入其他链表节点。

       例如,原始链表A1 - A2 - A3与链表B1 - B2 - B3,`PushFrontList`结果为B1 - B2 - B3 - A1 - A2 - A3,`PushBackList`结果为A1 - A2 - A3 - B1 - B2 - B3。

golang的对象池sync.pool源码解读

       在编程实践中,对象池sync.pool的出现是为了优化频繁创建和销毁对象带来的性能问题。它解决了新对象创建时的内存分配和垃圾回收(GC)压力。对象池的核心思想是复用已经创建的对象,避免不必要的资源消耗。

       对象池的应用范围广泛,如连接池、线程池等,它们都是通过池化来复用资源,减少创建和销毁的开销,提升服务响应速度。实际上,缓存也是类似的概念,通过存储已计算结果,减少重复计算,加快服务响应。

       go1.版本的对象池原理涉及一个简单的结构体,通过Get和Put函数来管理对象。创建对象池时,需要传入一个创建新对象的函数。池中的对象存储在local数组中,每个goroutine的P都有对应的池,以减少锁竞争。pin和unpin函数用于管理和抢占P,以控制资源的使用。

       在GC过程中,对象池会在每次清理前清空,以防止内存溢出。go1.版本引入了victim cache机制,通过双向链表优化了对象的获取和存储,减少锁竞争,提升性能。

       总结来说,对象池的关键在于复用和预分配,通过技术手段减少创建、减少GC压力,并利用缓存提高响应速度。理解这些原理对于优化程序性能和资源管理至关重要。

golang源码系列---手把手带你看heap实现

       heap包定义实现堆所需结构与操作方法,包含Interface接口,允许实现堆功能。Push和Pop方法分别用于添加元素与移除堆顶元素。

       构建堆时需实现sort.Interface接口。Heap包内部仅包含两个非导出函数,作为堆导出方法的基础。

       down函数将堆顶元素下沉,保持堆结构。up函数则将当前节点上浮,确保堆的性质。

       Init函数初始化堆结构。Push与Pop方法用于添加与移除元素,底层依赖up和down函数。

       Remove方法移除指定位置元素,类似Pop,通过上浮下沉操作恢复堆结构。

       Fix函数在节点值变化后,用于修复堆结构。

       使用案例:以学生信息为例,根据年龄排序,并按升序输出。

       总结:heap包提供实现堆所需的接口与方法,通过非导出函数与导出方法的配合,完成堆的操作与构建。实例化堆后,可根据具体需求使用Push、Pop、Remove与Fix方法,实现元素的添加、删除与结构修复。

Golang源码分析Golang如何实现自举(一)

       本文旨在探索Golang如何实现自举这一复杂且关键的技术。在深入研究之前,让我们先回顾Golang的历史。Golang的开发始于年,其编译器在早期阶段是由C语言编写。直到Go 1.5版本,Golang才实现了自己的编译器。研究自举的最佳起点是理解从Go 1.2到Go 1.3的版本,这些版本对自举有重要影响,后续还将探讨Go 1.4。

       接下来,我们来了解一下Golang的编译过程。Golang的编译主要涉及几个阶段:词法解析、语法解析、优化器和生成机器码。这一过程始于用户输入的“go build”等命令,这些命令实际上触发了其他内部命令的执行。这些命令被封装在环境变量GOTOOLDIR中,具体位置因系统而异。尽管编译过程看似简单,但实际上包含了多个复杂步骤,包括词法解析、语法解析、优化器、生成机器码以及连接器和buildid过程。

       此外,本文还将介绍Golang的目录结构及其功能,包括API、文档、C头文件、依赖库、源代码、杂项脚本和测试目录。编译后生成的文件将被放置在bin和pkg目录中,其中bin目录包含go、godoc和gofmt等文件,pkg目录则包含动态链接库和工具命令。

       在编译Golang时,首先需要了解如何安装GCC环境。为了确保兼容性,推荐使用GCC 4.7.0或4.7.1版本。通过使用Docker镜像简化了GCC的安装过程,使得编译变得更为便捷。编译Golang的命令相对简单,通过执行./all即可完成编译过程。

       最后,本文对编译文件all.bash和make.bash进行了深入解析。all.bash脚本主要针对nix系统执行,而make.bash脚本则包含了编译过程的关键步骤,包括设置SELinux、编译dist文件、编译go_bootstrap文件,直至最终生成Golang可执行文件。通过分析这些脚本,我们可以深入了解Golang的自举过程,即如何通过go_bootstrap文件来编译生成最终的Golang。

       总结而言,Golang的自举过程是一个复杂且多步骤的技术,包含了从早期C语言编译器到自动生成编译器的转变。通过系列文章的深入探讨,我们可以更全面地理解Golang自举的实现细节及其背后的逻辑。本文仅是这一过程的起点,后续将详细解析自举的关键组件和流程。

相关推荐
一周热点