【editplus查找源码功能】【精品课程网站源码】【易语言 服务端源码】arrayblocking源码
1.arrayblockingԴ??
2.LinkedBlockingQueue
3.深入理解条件变量Condition
4.从源码全面解析 LinkedBlockingQueue的来龙去脉
arrayblockingԴ??
引言
本文将详细解读Java中常见的5种BlockingQueue阻塞队列,包括它们的优缺点、区别以及典型应用场景,以帮助深入理解这5种队列的独特性质和使用场合。
常见的BlockingQueue有以下5种:
1. **基于数组实现的阻塞队列**:创建时需指定容量大小,是editplus查找源码功能有限队列。
2. **基于链表实现的阻塞队列**:默认无界,可自定义容量。
3. **无缓冲阻塞队列**:生产的数据需立即被消费,无缓冲。
4. **优先级阻塞队列**:支持元素按照大小排序,无界。
5. **延迟阻塞队列**:基于PriorityQueue实现,无界。
**BlockingQueue简介
**BlockingQueue作为接口,定义了放数据和取数据的精品课程网站源码多组方法,适用于并发多线程环境,特别适合生产者-消费者模式。
**应用场景
**BlockingQueue的作用类似于消息队列,用于解耦、异步处理和削峰,适用于线程池的核心功能实现。
**区别与比较
**- **ArrayBlockingQueue**:基于数组实现,容量可自定义。
- **LinkedBlockingQueue**:基于链表实现,无界或自定义容量。
- **SynchronousQueue**:同步队列,生产者和消费者直接交互,无需缓冲。
- **PriorityBlockingQueue**:实现优先级排序,无界队列。易语言 服务端源码
- **DelayQueue**:本地延迟队列,支持元素延迟执行。
在选择使用哪种队列时,需考虑具体任务的特性、吞吐量需求以及是否需要优先级排序或延迟执行。
本文旨在提供全面理解Java中BlockingQueue的指南,从源码剖析到应用场景,帮助开发者更好地应用这些工具于实际项目中。
LinkedBlockingQueue
LinkedBlockingDequeå¨ç»æä¸æå«äºä¹å讲解è¿çé»å¡éåï¼å®ä¸æ¯Queueèæ¯Dequeï¼ä¸æç¿»è¯æå端éåï¼å端éåæå¯ä»¥ä»ä»»æä¸ç«¯å ¥éæè åºéå ç´ çéåï¼å®ç°äºå¨éå头åéåå°¾çé«ææå ¥å移é¤LinkedBlockingDequeæ¯é¾è¡¨å®ç°ç线ç¨å®å ¨çæ ççåæ¶æ¯æFIFOãLIFOçå端é»å¡éåï¼å¯ä»¥å顾ä¸ä¹åçLinkedBlockingQueueé»å¡éåç¹ç¹ï¼æ¬è´¨ä¸æ¯ç±»ä¼¼çï¼ä½æ¯åæäºä¸åï¼
QueueåDequeçå ³ç³»æç¹ç±»ä¼¼äºåé¾è¡¨åååé¾è¡¨ï¼LinkedBlockingQueueåLinkedBlockingDequeçå é¨ç»ç¹å®ç°å°±æ¯åé¾è¡¨åååé¾è¡¨çåºå«ï¼å ·ä½å¯åèæºç ã
å¨ç¬¬äºç¹ä¸å¯è½æäºäººæäºçé®ï¼ä¸¤ä¸ªäºæ¥éåä¸ä¸ªäºæ¥éçåºå«å¨åªéï¼æ们å¯ä»¥èè以ä¸åºæ¯ï¼
A线ç¨å è¿è¡å ¥éæä½ï¼B线ç¨éåè¿è¡åºéæä½ï¼å¦ææ¯LinkedBlockingQueueï¼A线ç¨å ¥éè¿ç¨è¿æªç»æï¼å·²è·å¾éè¿æªéæ¾ï¼ï¼B线ç¨åºéæä½ä¸ä¼è¢«é»å¡çå¾ ï¼éä¸åï¼ï¼å¦ææ¯LinkedBlockingDequeåB线ç¨ä¼è¢«é»å¡çå¾ ï¼åä¸æéï¼A线ç¨å®ææä½æ继ç»æ§è¡
LinkedBlockingQueueä¸è¬çæä½æ¯è·åä¸æéå°±å¯ä»¥ï¼ä½æäºæä½ä¾å¦removeæä½ï¼åéè¦åæ¶è·å两æéï¼ä¹åçLinkedBlockingQueue讲解æ¾ç»è¯´æè¿
LinkedBlockingQueue ç±äºæ¯åé¾è¡¨ç»æï¼åªè½ä¸ç«¯æä½ï¼è¯»åªè½å¨å¤´ï¼ååªè½å¨å°¾ï¼å æ¤ä¸¤æéæçæ´é«ãLinkedBlockingDeque ç±äºæ¯åé¾è¡¨ç»æï¼ä¸¤ç«¯å¤´å°¾é½è½è¯»åï¼å æ¤åªè½ç¨ä¸æéä¿è¯ååæ§ã å½ç¶æçä¹å°±æ´ä½
ArrayBlockingQueue
LinkedBlockingQueue
é®é¢ï¼ä¸ºä»ä¹ArrayBlockingQueue ä¸è½ç¨ä¸¤æé
å 为ååºåï¼ArrayBlockingQueue çå ç´ éè¦åå移å¨ã
LinkedBlockingQueueå é¨ç±åé¾è¡¨å®ç°ï¼åªè½ä»headåå ç´ ï¼ä»tailæ·»å å ç´ ãæ·»å å ç´ åè·åå ç´ é½æç¬ç«çéï¼ä¹å°±æ¯è¯´LinkedBlockingQueueæ¯è¯»åå离çï¼è¯»åæä½å¯ä»¥å¹¶è¡æ§è¡ãLinkedBlockingQueueéç¨å¯éå ¥é(ReentrantLock)æ¥ä¿è¯å¨å¹¶åæ åµä¸ç线ç¨å®å ¨ã
LinkedBlockingQueueä¸å ±æä¸ä¸ªæé å¨ï¼åå«æ¯æ åæé å¨ãå¯ä»¥æå®å®¹éçæé å¨ãå¯ä»¥ç©¿å ¥ä¸ä¸ªå®¹å¨çæé å¨ãå¦æå¨å建å®ä¾çæ¶åè°ç¨çæ¯æ åæé å¨ï¼LinkedBlockingQueueçé»è®¤å®¹éæ¯Integer.MAX_VALUEï¼è¿æ ·åå¾å¯è½ä¼å¯¼è´éåè¿æ²¡æ满ï¼ä½æ¯å åå´å·²ç»æ»¡äºçæ åµï¼å å溢åºï¼ã
size()æ¹æ³ä¼éåæ´ä¸ªéåï¼æ¶é´å¤æ度为O(n),æ以æ好éç¨isEmtpy
1.å¤æå ç´ æ¯å¦ä¸ºnullï¼ä¸ºnullæåºå¼å¸¸
2.å é(å¯ä¸æé)
3.å¤æéåé¿åº¦æ¯å¦å°è¾¾å®¹éï¼å¦æå°è¾¾ä¸ç´çå¾
4.å¦æ没æé满ï¼enqueue()å¨éå°¾å å ¥å ç´
5.éåé¿åº¦å 1ï¼æ¤æ¶å¦æéåè¿æ²¡æ满ï¼è°ç¨signalå¤éå ¶ä»å µå¡éå
1.å é(ä¾æ§æ¯ReentrantLock)ï¼æ³¨æè¿éçéååå ¥æ¯ä¸åç两æé
2.å¤æéåæ¯å¦ä¸ºç©ºï¼å¦æ为空就ä¸ç´çå¾
3.éè¿dequeueæ¹æ³åå¾æ°æ®
3.åèµ°å ç´ åéåæ¯å¦ä¸ºç©ºï¼å¦æä¸ä¸ºç©ºå¤éå ¶ä»çå¾ ä¸çéå
åçï¼å¨éå°¾æå ¥ä¸ä¸ªå ç´ ï¼ å¦æéå没满ï¼ç«å³è¿åtrueï¼ å¦æéå满äºï¼ç«å³è¿åfalseã
åçï¼å¦æ没æå ç´ ï¼ç´æ¥è¿ånullï¼å¦ææå ç´ ï¼åºé
1ãå ·ä½å ¥éä¸åºéçåçå¾ï¼
å¾ä¸æ¯ä¸ä¸ªèç¹ååé¨å表示å°è£ çæ°æ®xï¼åè¾¹ç表示æåçä¸ä¸ä¸ªå¼ç¨ã
1.1ãåå§å
åå§åä¹åï¼åå§åä¸ä¸ªæ°æ®ä¸ºnullï¼ä¸headålastèç¹é½æ¯è¿ä¸ªèç¹ã
1.2ãå ¥é两个å ç´ è¿å
1.3ãåºéä¸ä¸ªå ç´ å
表é¢ä¸çï¼åªæ¯å°å¤´èç¹çnextæéæåäºè¦å é¤çx1.nextï¼äºå®ä¸è¿æ ·æè§çå°±å®å ¨å¯ä»¥ï¼ä½æ¯jdkå®é ä¸æ¯å°åæ¥çheadèç¹å é¤äºï¼èä¸è¾¹çå°çè¿ä¸ªheadèç¹ï¼æ£æ¯åååºéçx1èç¹ï¼åªæ¯å ¶å¼è¢«ç½®ç©ºäºã
2ãä¸ç§å ¥é对æ¯ï¼
3ãä¸ç§åºé对æ¯ï¼
深入理解条件变量Condition
深入理解条件变量Condition
在并发编程中,条件变量(Condition)是管理线程等待和通知的一种重要工具,尤其在使用可重入锁(ReentrantLock)时,Condition提供了更加灵活的等待和唤醒机制。相比于synchronized关键字的内置等待/唤醒机制,Condition允许线程在特定条件满足时再继续执行,提高了代码的p2p信贷 源码可读性和可维护性。
让我们通过一个简单的Demo来了解Condition的基本用法。假设我们有两个线程:一个负责等待特定条件,另一个负责通知条件满足。在使用Condition时,我们通常将等待线程调用`await()`方法,进入等待状态,直到另一个线程调用`signal()`方法通知条件满足,等待线程才会被唤醒。
Condition与ReentrantLock的结合使我们能够实现更高级的同步控制。比如,在Java的并发工具包中,ArrayBlockingQueue就利用了Condition来管理队列的空/满状态。通过两个条件变量:一个用于检测队列是否为空,另一个用于检测队列是否已满,队列的c2c商城 源码入队和出队操作会根据当前队列状态调用相应的Condition,实现线程间的高效同步。
此外,Condition在Kafka的BufferPool中也有应用。BufferPool管理内存分配和回收时,也需要确保线程间的同步。Condition在此场景下的使用,保证了内存操作的正确顺序,避免了竞态条件,提高了系统的稳定性和性能。
接下来,我们深入分析Condition的实现细节。Condition的核心实现基于可重入锁(ReentrantLock),其内部类ConditionObject封装了Condition的主要功能。通过`await()`和`signal()`方法,ConditionObject实现了等待和通知机制。在等待时,调用线程会释放锁,进入等待队列;当有线程调用`signal()`方法时,等待队列中的线程会被唤醒,并重新获得锁,继续执行。
在Linux环境下,条件变量机制同样用于实现线程间同步,其基本原理与Java中的Condition相似。在等待条件满足时,线程会原子地释放锁,进入等待状态,直到其他线程通过适当的机制(如信号量、事件等)通知它,线程才会被唤醒并重新获取锁。
如果你想更深入地了解Condition的实现以及相关原理,可以阅读以下资源:
1. **可重入锁 ReentrantLock 源码阅读**:深入理解ReentrantLock的实现,包括ConditionObject的细节。
2. **pthread_cond_wait**:了解Linux环境下条件变量的使用方法。
3. **《Unix高级环境编程》**:书中关于线程和同步机制的章节提供了丰富的理论背景。
从源码全面解析 LinkedBlockingQueue的来龙去脉
并发编程是互联网技术的核心,面试官常在此领域对求职者进行深入考察。为了帮助读者在面试中占据优势,本文将解析 LinkedBlockingQueue 的工作原理。
阻塞队列是并发编程中常见的数据结构,它在生产者和消费者模型中扮演重要角色。生产者负责向队列中添加元素,而消费者则从队列中取出元素。LinkedBlockingQueue 是 Java 中的一种高效阻塞队列实现,它底层基于链表结构。
在初始化阶段,LinkedBlockingQueue 不需要指定队列大小。除了基本成员变量,它还包含两把锁,分别用于读取和写入操作。有读者疑惑,为何需要两把锁,而其他队列只用一把?本文后续将揭晓答案。
生产者使用 `add()`、`offer()`、`offer(time)` 和 `put()` 方法向队列中添加元素。消费者则通过 `remove()`、`poll()`、`poll(time)` 和 `take()` 方法从队列中获取元素。
在解析源码时,发现 LinkedBlockingQueue 与 ArrayBlockingQueue 在锁的使用上有所不同。ArrayBlockingQueue 使用互斥锁,而 LinkedBlockingQueue 使用读锁和写锁。这是否意味着 ArrayBlockingQueue 可以使用相同类型的锁?答案是肯定的,且使用两把锁的 ArrayBlockingQueue 在性能上有所提升。
流程图展示了 LinkedBlockingQueue 和 ArrayBlockingQueue 之间的相似之处。有兴趣的读者可以自行绘制。
总结而言,LinkedBlockingQueue 是一种高效的阻塞队列实现,其底层结构基于链表。它通过读锁和写锁管理线程安全,为生产者和消费者提供了并发支持。通过优化锁的使用,LinkedBlockingQueue 在某些场景下展现出更好的性能。
互联网寒冬虽在,但学习和分享是抵御寒冬的最佳方式。通过交流经验,可以减少弯路,提高效率。如果你对后端架构和中间件源码感兴趣,欢迎与我交流,共同进步。