1.【CANN训练营笔记】Atlas 200I DK A2体验手写数字识别模型训练&推理
【CANN训练营笔记】Atlas 200I DK A2体验手写数字识别模型训练&推理
在本次CANN训练营中,源码我们对华为Atals I DK A2开发板进行了详细的源码探索,该板子配备有4GB内存和Ascend B4 NPU,源码运行的源码星辰直播 源码是CANN 7.0环境。
首先,源码为了顺利进行开发,源码我们需要下载预编译的源码torch_npu,并安装PyTorch 2.1.0和torchvision 0..0。源码接着,源码配置环境变量,源码确保系统可以识别所需的源码通达信柏拉爱空指标源码库和文件。Ubuntu系统和欧拉系统下的源码安装步骤有所不同,例如,源码需要将opencv的源码头文件链接到系统默认路径。
对于ACLLite库,源码我们采取源码安装方式,通达信集合竞价主图源码确保动态库的识别,并在LD.so.conf.d下添加ffmpeg.conf配置。同时,设置ffmpeg的安装路径和环境变量。接着,易语言海康威视验证码源码克隆ACLLite代码仓库并安装必要的依赖。
进入模型训练阶段,我们调整环境变量来减少算子编译时的内存占用,然后运行训练脚本来启动训练过程。在训练结束后,如何找出好的音乐网站源码我们生成了mnist.pt模型,并将其转换为mnist.onnx模型,以便进行在线推理。
在线推理阶段,我们使用训练得到的模型对测试进行识别。测试展示了一次实际的推理过程,其结果直观地展示了模型的性能。
对于离线推理,我们从PyTorch框架导入ResNet模型,并转换为升腾AI处理器能识别的格式。提供了下载模型和转换命令,只需简单拷贝执行。将在线推理的mnist.onnx模型复制到model目录后,我们配置AIPP,进行模型转换,然后编译样例源码并运行,得到最终的推理结果。