皮皮网

【pythoncsrf源码】【有地方开源码】【点播视频系统源码】nvme源码

来源:大数据清洗源码 时间:2025-01-18 16:07:38

1.SPDK/NVMe存储技术分析之理解SGL
2.PostgreSQL14基于源码安装和入门教程
3.速存,源码详细罗列香橙派AIpro外设接口样例大全(附源码)
4.二十年重回首——CIH病毒源码分析
5.总结uboot的源码重要概念,不知道的源码看过来

nvme源码

SPDK/NVMe存储技术分析之理解SGL

       在NVMe over PCIe环境中,I/O命令支持SGL(Scatter Gather List 分散聚合表)和PRP(Physical Region Page 物理(内存)区域页),源码管理命令仅支持PRP。源码与此相对,源码pythoncsrf源码在NVMe over Fabrics环境中,源码无论是源码管理命令还是I/O命令都只支持SGL。NVMe over Fabrics网络既支持FC网络,源码又支持RDMA网络。源码在RDMA编程中,源码SGL是源码最基本的数据组织形式。SGL是源码由一个或多个SGE(Scatter/Gather Element)构成的数组。

       SGL的源码每一个SGE就是一个Data Segment(数据段)。在数据传输过程中,源码发送/接收使用的Verbs API为ibv_post_send(),该函数将以 wr 开头的工作请求 (WR) 链表发送到队列对 qp 的发送队列。在调用此函数之前,必须填充好数据结构wr。wr是一个链表,包含了一个sg_list(i.e. SGL),其长度为num_sge。

       一个SGL被至少一个MR(内存区域)保护,多个MR存在于同一个PD(物理地址域)中。一个SGL数组包含多个SGE,SGE的长度不一。在内存中,这些buffer并不连续,有地方开源码而是Scatter(分散)在各个地方。RDMA硬件读取到SGL后,进行Gather(聚合)操作,从而在RDMA硬件的Wire上看到的是连续的数据段。通过使用SGL,可以将分散在内存中的多个数据段(不连续)交给RDMA硬件去聚合成连续的数据段。

       在理解SGL的原理和实现后,可以参考相关学习资源,如Dpdk/网络协议栈/vpp/OvS/DDos/NFV/虚拟化/高性能专家,获取更多DPDK学习资料。另外,推荐观看视频,如dpdk网卡数据的抓取(一)/协议栈/源码/netmap/柔性数组/udp协议/虚拟化/ICMP/NFV/网卡 dpdk为你的网络定义新功能(一)/NFV/协议栈/虚拟化/源码/网卡/ovs/vpp,以加深对SGL的实践理解。最后,提供一段代码示例,展示如何为调用ibv_post_send()准备SGL和WR。

PostgreSQL基于源码安装和入门教程

       PostgreSQL 源码安装入门教程

       本文将引导您在openEuler . LTS-SP3系统上基于源码安装并配置PostgreSQL ,包括操作系统环境设置、网络配置、软件包安装、用户和数据盘创建,以及数据库的初始化、启动和管理。

       1.1 操作系统环境

       安装openEuler后,确保系统安装了bc命令(若缺失,后续会安装)。点播视频系统源码

       1.2 网络配置

       通过Nmcli配置网络,首先检查并设置网络接口ens的IP地址,无论是自动获取还是静态配置。

       1.3 更新系统与工具安装

       更新软件包并安装bc、vim、tmux和tar等工具,以支持后续操作。

       1.4 用户与数据盘创建

       创建postgres用户和用户组,以及可能的专用数据盘,如NVMe SSD,用于提高性能。

       2. 安装与配置

       2.1 下载与解压

       以root权限下载并解压PostgreSQL 的源代码压缩包。

       2.2 安装与初始化

       按照指导进行编译和安装,初始化数据库并设置启动参数。

       2.3 启动与管理

       启动数据库,登录并创建必要用户、数据库和表空间。

       3. 开机自动启动

       3.1 init.d环境

       使用start-scripts中的脚本配置init.d,确保PostgreSQL在系统启动时自动运行。

       3.2 systemd环境

       为PostgreSQL创建systemd服务文件,确保启动和管理的自动化。

       4. psql操作示例

       展示如何使用psql进行数据库操作,包括创建数据库、模式、表和数据插入等。

       5. 远程连接

       讲解如何配置防火墙以允许远程连接。

       通过以上步骤,c++ set 源码您将掌握PostgreSQL 的源码安装和基本管理,准备好进行数据管理和应用程序开发。

速存,详细罗列香橙派AIpro外设接口样例大全(附源码)

       华为云社区分享了关于香橙派AIpro外设接口的详细指南,包括样例源码,旨在帮助开发者充分利用其丰富的功能。AIpro板搭载升腾AI处理器,支持8TOPS INT8计算,适用于多种数据分析和推理计算场景,如教育、机器人和无人机等。

       AIpro板提供了众多接口,如两个HDMI输出、GPIO、Type-C电源接口、SATA/NVMe SSD M.2插槽、TF插槽、千兆网口、USB3.0和Type-C接口,以及两个MIPI摄像头、MIPI屏和预留的电池接口。以下是部分接口的使用示例:

       通过MIPI接口,可以播放音频到耳机。只需插入耳机并进入音频测试程序,通过命令播放*.pcm文件。

       USB接口可用于录音和播放音频,准备好录音功能的mfc;获取网页源码耳机后,通过arecord命令录制,aplay命令播放。

       MIPI摄像头可用于拍摄,通过IMX摄像头连接后,运行样例程序即可拍照。

       USB接口的摄像头支持获取图像,通过v4l2-ctl查看设备节点,然后使用内置样例代码拍照并查看结果。

       通过HDMI接口,可以显示图像,连接显示器后,执行特定脚本进行图像显示。

       MIPI接口也能显示图像,但目前仅限于显示一张,使用LCD屏幕配合特定脚本操作。

       想要了解更多样例源码和接口详解,可访问升腾社区文档中心和香橙派AIpro学习资源一站式导航。提升你的AIpro开发经验,探索更多可能!

二十年重回首——CIH病毒源码分析

       CIH病毒源码分析

       随着双十一的临近,我在考虑为自己的电脑添置一块NVME协议的固态硬盘。然而,我发现自己老款主板并不支持NVME协议。在探索解决方案时,我偶然回想起了CIH病毒,一款曾引起巨大破坏的古老病毒。出于好奇,我决定深入分析CIH源码,回顾那段历史,并分享分析过程与心得。

       CIH源码在GitHub上能找到,版本1.4。源码的编写者习惯良好,代码中包含了功能更新的时间和具体细节。时间线如下:

       1.0版于年4月日完成,基本功能实现,代码长度字节。

       1.1版于5月日完成,增加了操作系统判断,若为WinNT则不执行病毒,长度字节。

       1.2版于5月日,加入删除BIOS和破坏硬盘功能,长度字节。

       1.3版于5月日,修复了感染WinZIP自解压文件的错误,长度字节。

       1.4版于5月日,彻底修复错误,长度字节。

       CIH病毒于年7月日在美国大面积传播,8月日全球蔓延,引发公众恐慌。最终,病毒作者陈盈豪公开道歉,提供了解毒程序和防毒软件,病毒逐渐被控制。

       源码的第一部分是PE文件头,用于符合PE文件格式,确保Windows识别和执行。接下来,病毒开始运行,通过修改SEH(Structured Exception Handling)来识别操作系统类型。如果为WinNT或之后版本,病毒将自行产生异常并停止运行。

       病毒通过修改中断描述符表,获得Ring0权限。然而,在WinNT操作系统中,这种方法已失效。因此,修改SEH的目的是判断当前操作系统,以避免在非Win9x系统上感染。

       病毒在Win9x系统中,通过修改中断描述符表,将异常处理函数指向病毒自定义的MyExceptionHook。病毒利用此函数安装系统调用钩子,当执行文件操作时,会运行到病毒代码中。

       病毒在MyExceptionHook中,通过dr0寄存器记录病毒安装状态,分配系统内存,并将病毒代码复制到内存中。之后,病毒安装钩子,当有文件读写调用时,会执行病毒代码。

       当系统调用参数为关闭文件时,病毒进行时间判断,直到每月日,统一开始破坏BIOS和硬盘。破坏BIOS的方法包括映射BIOS内容、设置BIOS可写性。硬盘破坏则通过VXD驱动调用命令。

       综上所述,CIH病毒利用了Win9x系统的漏洞,通过修改SEH和中断描述符表进入内核,安装系统调用钩子,感染文件并在特定时间执行破坏操作。然而,其在WinNT及后续系统上的感染能力已失效。尽管如此,CIH病毒的源码和分析过程对了解历史和安全漏洞仍具有重要价值。

总结uboot的重要概念,不知道的看过来

       本篇内容不讲解uboot源码,只总结面试中高频问到的重要知识点。内容适用于嵌入式新人了解uboot,对老手有复习和查漏补缺的作用。

       1、PC机启动:上电后,BIOS程序初始化DDR内存和硬盘,从硬盘读取OS镜像到DDR,跳转执行OS。

       2、嵌入式Linux系统启动:上电后执行uboot,初始化DDR、Flash,将OS从Flash读到DDR,启动OS。

       3、uboot定义与作用:uboot属于bootloader,作为单线程裸机程序,主要作用是初始化硬件、内存、flash等,引导内核启动。

       4、uboot启动阶段(不同平台差异):MTK平台:boot rom -> preloader -> lk -> kernel;RK平台:bootrom -> spl(miniloader) -> uboot -> trust -> kernel;NXP平台:bootrom -> bl2 -> ATF -> uboot -> kernel。

       5、uboot支持多种启动方式:SPI Flash/eMMC/Nvme/SD/Hard Disk/U-Disk/net。启动方式不同,固件存放位置也不同。

       6、掌握uboot的关键点:命令和环境变量。uboot启动后大部分工作在shell中完成,命令用于操作,环境变量如bootcmd和bootargs,用于设置启动参数。

       7、bootargs参数详解:root用于指定rootfs位置,console用于设置控制台,mem用于指定内核使用内存大小,ramdisk_size用于设置ramdisk大小,initrd用于指定initrd参数,init用于指定启动脚本,mtdparts用于设置分区。

       8、常用bootargs组合:文件系统为ramdisk、jffs2类型、nfs等不同情况下的bootargs设置示例。

       总结,了解uboot是嵌入式开发的基础,掌握其启动过程和关键参数,对提高开发效率和解决问题有重要作用。