【uvm1.2源码】【源码集团陈丹丹】【反射源码原理】spark分布式源码_spark的几种部署模式

时间:2024-11-23 13:49:12 来源:eslipse看源码乱码 分类:焦点

1.spark阶段是布式什么意思?
2.开源 | Spark Commiter 深度解读:Apache Spark Native Engine
3.Spark原理 | 内存管理
4.spark原理系列 broadcast广播原理优缺点示例源码权威讲解
5.用Python语言写Spark
6.分布式计算引擎 Flink/Spark on k8s 的实现对比以及实践

spark分布式源码_spark的几种部署模式

spark阶段是什么意思?

       Spark是一种开源分布式计算系统,它能够在大型数据集上进行快速的源码数据处理和分析。Spark中的种部阶段是一组任务的集合,这些任务可以在一个执行者上同时运行。署模式在每个阶段中,布式任务被分组和调度以最大化并行性和数据本地性。源码uvm1.2源码Spark阶段的种部数量通常与集群的CPU核心数相匹配。

       Spark阶段对于大数据处理的署模式优势

       Spark阶段显著提高了大数据处理的效率。通过将任务分组和调度,布式Spark可以实现更高的源码并行性,从而更快地处理大型数据集。种部此外,署模式Spark通过解决数据处理过程中的布式延迟问题来提高吞吐量。当数据集非常大时,源码延迟会导致处理速度变慢,种部但Spark可以使处理时间减少到毫秒级别。

       如何利用Spark阶段进行分布式计算

       为了充分利用Spark阶段进行分布式计算,需要使用适当的工具和技术。首先,需要在集群中安装Spark并配置批处理、交互式查询等任务的应用程序。然后,需要了解如何编写Spark任务代码以实现并行处理。最后,需要使用Spark的API和库来执行数据分析、机器学习、图形处理等任务。通过利用Spark阶段进行分布式计算,可以加速大规模数据处理和分析的过程。

开源 | Spark Commiter 深度解读:Apache Spark Native Engine

       Apache Spark 是基于 JVM 语言开发的分布式计算引擎,当前性能瓶颈集中在计算资源不足,如 CPU 和内存。在 SSD 广泛应用的大背景下,计算瓶颈逐渐转移至 CPU。尽管 JVM 优化有局限性,如方法字节码限制和垃圾回收效率,基于更底层语言如 C++ 开发 Native Engine 可以充分利用现代 CPU 特性如 SIMD 加速计算,源码集团陈丹丹并减少垃圾回收对性能的影响。这促使更多项目关注 Native Engine,如 Databricks 的 Photon、Meta 的 Velox 和 Intel 的 Gluten。这些 Native Engine 旨在加速 Spark SQL 计算性能,带来 2 倍提升。Apache Arrow Datafusion 和快手的 Blaze 也是探索中的一部分。

Spark原理 | 内存管理

       Spark作为一个基于内存的分布式计算引擎,其内存管理模块在整个系统中扮演着非常重要的角色。

        在执行Spark的应用程序时,Spark集群会启动Driver和Executor两种JVM进程:

        Spark管理的内存主要划分为4个区域:

        Executor作为一个JVM进程,它的内存管理建立在JVM的内存管理之上,Spark对JVM的堆内(On-heap)空间进行了更为详细的分配,以充分利用内存。同时,Spark引入了堆外(Off-heap)内存,使之可以直接在工作节点的系统内存中开辟空间,进一步优化了内存的使用。

        堆内内存的大小,由 Spark 应用程序启动时的 executor-memory 或 spark.executor.memory 参数配置。Executor 内运行的并发任务共享 JVM 堆内内存,这些任务在缓存 RDD 数据和广播(Broadcast)数据时占用的内存被规划为存储(Storage)内存,而这些任务在执行 Shuffle 时占用的内存被规划为执行(Execution)内存,剩余的部分不做特殊规划,那些 Spark 内部的对象实例,或者用户定义的 Spark 应用程序中的对象实例,均占用剩余的空间。不同的管理模式下,这三部分占用的空间大小各不相同。

        Spark 对堆内内存的管理是一种逻辑上的"规划式"的管理,因为对象实例占用内存的申请和释放都由 JVM 完成,Spark 只能在申请后和释放前记录这些内存,我们来看其具体流程:

        为了进一步优化内存的使用以及提高 Shuffle 时排序的效率,Spark 引入了堆外(Off-heap)内存,使之可以直接在工作节点的系统内存中开辟空间,存储经过序列化的二进制数据。利用 JDK Unsafe API(从 Spark 2.0 开始),在管理堆外的存储内存时不再基于 Tachyon,而是与堆外的执行内存一样,基于 JDK Unsafe API 实现,Spark 可以直接操作系统堆外内存,减少了不必要的内存开销,以及频繁的 GC 扫描和回收,提升了处理性能。堆外内存可以被精确地申请和释放,而且序列化的数据占用的空间可以被精确计算,所以相比堆内内存来说降低了管理的难度,也降低了误差。

        在默认情况下堆外内存并不启用,可通过配置 spark.memory.offHeap.enabled 参数启用,并由 spark.memory.offHeap.size 参数设定堆外空间的大小。除了没有 other 空间,堆外内存与堆内内存的划分方式相同,所有运行中的并发任务共享存储内存和执行内存。

        Spark 1.6 之后默认为统一管理(UnifiedMemoryManager)方式,1.6 之前采用的静态管理(StaticMemoryManager)方式仍被保留,可通过配置 spark.memory.useLegacyMode=true 参数启用静态内存管理方式。下面我们介绍下两种内存管理模型的进化。

        在 Spark 最初采用的静态内存管理机制下,存储内存、执行内存和其他内存的大小在 Spark 应用程序运行期间均为固定的,但用户可以应用程序启动前进行配置,堆内内存的分配如下所示:

        Spark 1.6 之后引入的统一内存管理机制,与静态内存管理的区别在于存储内存和执行内存共享同一块空间,可以动态占用对方的空闲区域。如下图所示:

        其中最重要的优化在于动态占用机制,其规则如下:

        新的版本引入了新的配置项:

        凭借统一内存管理机制,Spark 在一定程度上提高了堆内和堆外内存资源的利用率,降低了开发者维护 Spark 内存的难度,但并不意味着开发者可以高枕无忧。譬如,所以如果存储内存的空间太大或者说缓存的数据过多,反而会导致频繁的全量垃圾回收,降低任务执行时的性能,因为缓存的 RDD 数据通常都是长期驻留内存的。所以要想充分发挥 Spark 的性能,需要开发者进一步了解存储内存和执行内存各自的管理方式和实现原理。

spark原理系列 broadcast广播原理优缺点示例源码权威讲解

       Spark广播(broadcast)的原理是通过将一个只读变量从驱动程序发送到集群上的所有工作节点,以便在运行任务时能够高效地访问这个变量。广播变量只会被发送一次,并且在工作节点上缓存,以供后续任务重用。

       这种方式可以避免在任务执行期间多次传输相同的数据,从而提高性能和效率。

       在Spark中,广播变量的实现主要依赖于DriverEndpoint和ExecutorEndpoint之间的通信机制。

       具体来说,当驱动程序将广播变量发送给工作节点时,它会使用BlockManager将序列化的块存储在内存中,并将块的元数据注册到BlockManagerMaster。

       然后,当工作节点执行任务时,它会向BlockManagerMaster请求获取广播变量的块,并从本地BlockManager中获取这些块的数据。这样,每个工作节点都可以在本地快速访问广播变量的数据。

       总结起来,Spark广播的实现涉及驱动程序对广播变量进行序列化和发送,以及工作节点接收、反序列化和缓存广播变量的块。这种机制有效地将只读数据分发到集群上的所有工作节点,提高了任务执行的性能和效率。

       广播变量在以下场景中非常有用:

       总之,广播变量适用于需要在多个任务之间共享只读数据,并且能够提供更高效的数据访问和减少网络传输开销的情况。通过使用广播变量,反射源码原理可以提高Spark应用程序的性能和效率。

       虽然广播在分布式计算中有很多优点,但它也存在一些缺点:

       因此,在使用广播变量时需要考虑其局限性和适用场景。如果数据集较大,实时性要求高,或者需要频繁修改数据,可能需要考虑其他替代方案来避免广播的缺点。

       示例源码broadcast方法

       功能:将只读变量广播到集群,返回一个Broadcast对象以在分布式函数中进行读取变量将仅发送一次到每个执行器,同时调用了内部的方法broadcastInternal

       基础类Broadcast抽象类

       Broadcast 是 Spark 中的一个广播变量类。广播变量允许程序员在每台机器上缓存一个只读的变量,而不是将它与任务一起传输。通过使用广播变量,可以以高效的方式为每个节点提供大型输入数据集的副本。

       Broadcast 类的构造函数接收一个唯一标识符 id,用于标识广播变量。

       Broadcast 类是一个抽象类,有以下几个主要方法:

       Broadcast 类还定义了一些受保护的方法,用于实际获取广播变量的值、取消持久化广播变量的值以及销毁广播变量的状态。

       Broadcast 类还具有 _isValid 和 _destroySite 两个私有变量,分别表示广播变量是否有效(即尚未销毁)以及销毁广播变量的位置信息。

       总体来说,Broadcast 类提供了管理广播变量的功能,并确保广播变量的正确使用和销毁。

       实现类TorrentBroadcast

       TorrentBroadcast 是使用类似 BitTorrent 协议实现的 Broadcast 的具体实现(目前spark中只有一种实现)。它继承自 Broadcast 类,并提供以下功能:

       TorrentBroadcast 包含以下主要成员变量和方法:

       TorrentBroadcast 通过将广播数据分成小块并使用类似 BitTorrent 的协议进行分布式传输,以提高广播性能和可靠性。它允许在集群中高效地广播大量数据,并减少了驱动程序的负载。

       内部版本广播方法broadcastInternal

       该方法是spark内部版本的广播 - 将只读变量广播到集群,变量将仅发送一次到每个执行器。该方法中使用了broadcastManager对象中的newBroadcast创建广播变量

       broadcastManager初始化和创建广播对象初始化

       BroadcastManager构造函数会调用自身的initialize方法,创建一个TorrentBroadcastFactory实例.对象在实例化时,会自动调用自身的脉冲源码指标公式writeBlocks,把数据写入blockManager:

       使用了实现了BroadcastFactory接口的TorrentBroadcastFactory工厂方法。TorrentBroadcastFactory 是一个使用类似 BitTorrent 的协议来进行广播数据分布式传输的广播工厂。

       创建广播变量

       TorrentBroadcastFactory实例通过调用newBroadcast() 方法创建新的 TorrentBroadcast对象即广播变量。 可以参考上文实现类

       源码拓展BroadcastManager对象

       BroadcastManager 是 Spark 中负责管理广播变量的类。它包含以下主要功能:

       此外,BroadcastManager 还包含了一些内部变量,如下:

       总而言之,BroadcastManager 提供了广播变量的管理和操作功能,确保广播变量能够在集群中高效地分发和访问。

       BroadcastFactory接口

       BroadcastFactory 是 Spark 中所有广播实现的接口,用于允许多个广播实现。它定义了以下方法:

       通过实现BroadcastFactory 接口,可以自定义广播实现,并在 SparkContext 中使用相应的广播工厂来实例化广播变量。

       TorrentBroadcastFactory

       TorrentBroadcastFactory 是一个使用类似 BitTorrent 的协议来进行广播数据分布式传输的广播工厂。它实现了 BroadcastFactory 接口,并提供以下功能:

       TorrentBroadcastFactory 主要用于支持使用 BitTorrent-like 协议进行分布式传输的广播操作,以提高广播数据在集群中的传输效率和可靠性。

       BitTorrent 协议

       BitTorrent 是一种流行的文件分享协议,它使用了一种名为 "块链" 的技术。块链技术通常用于比特币等加密货币,但在 BitTorrent 中,它用于分发大型文件。

       BitTorrent 的工作原理

       初始化: 当一个用户想要下载一个文件时,他首先创建一个 "种子" 文件,这个文件包含该文件的所有块的哈希列表。 查找: 下载者使用 BitTorrent 客户端软件查找其他下载者,并请求他们分享文件块。 交换: 下载者与其他下载者交换文件块。每个下载者不仅下载文件,还同时通过上传已下载的块来帮助其他下载者。 完整性: 每个块都有一个哈希值,用于验证块的完整性。如果某个块的哈希值不匹配,则该块被认为是无效的,需要重新下载。捕捉妖股源码

       块链技术

       BitTorrent 使用块链来确保每个块的完整性。每个块都包含前一个块的哈希值,这使得整个文件的所有块形成了一个链。如果某个块被修改或损坏,它的哈希值将不再匹配,BitTorrent 客户端将自动从其他下载者那里请求一个新的块。

       安全性

       BitTorrent 协议不使用加密,这意味着在交换文件块时,你的数据可能被第三方监听。为了提高安全性,你可以使用一个加密的 BitTorrent 客户端,如 BitTorrent Secure。

       总结

       BitTorrent 协议是一种高效的文件分享协议,它使用块链技术来保证文件块的完整性和安全性。然而,由于其不加密的特点,它可能不适合传输敏感信息。

用Python语言写Spark

       Spark 是一种广泛使用的大数据处理框架,PySpark 是其与 Python 的集成接口,允许开发者用 Python 语言编写 Spark 程序。我们将通过一个简单的字符统计程序来探索如何使用 PySpark 来进行基本的操作。首先,我们需要准备一个名为 a.csv 的文件。这个文件包含了我们要分析的数据。接着,使用编辑器,如 IntelliJ IDEA 新建一个文件名 `myfirstpyspark.py`。在启动 PySpark 程序之前,需要初始化 SparkSession 对象,它是所有操作的起点。对于本地单机模式,使用 "local[*]" 表示使用所有 CPU 核心,这种模式通常能满足开发阶段的需求,并且实现多线程并行运行,使代码编写过程变得简单。Spark 还支持其他分布式模式,如 Standalone,Yarn 和 Mesos 等。

       构建好 session 后,我们可以开始进行文件读取。首先,让我们读取我们的 CSV 文件。通过使用 `session.read` 函数,可以创建一个读对象。同时,还可以根据文件类型,如 parquet、json 或 elasticsearch,选择对应的读取对象。通常,读取 CSV 文件时需要设置一些参数,例如是否包含头部(默认是 True)和 CSV 的结构(字段名称和类型)。

       创建好 DataFrame 后,我们就可以进行数据操作。在这个例子中,我们想要统计文件中每个词的出现次数。在 PySpark 中,这可以通过一行代码轻松实现。在代码中引入 `pyspark.sql.functions as f`,方便使用内置的 UDF 函数。在这里,我们对文本字段进行分割,使用 explode 函数展开为多行,并命名为 `word`。然后,通过 groupBy 和 count 函数进行聚合统计。 若要对结果进行排序,我们同样可以轻松实现这一操作。

       若需要自定义函数以满足特殊需求,PySpark 支持通过定义普通的 Python 函数来创建 UDF,然后在代码中使用它,以提供更为灵活的数据处理能力。通过这些高级用法,可以极大地增强 PySpark 应用程序的威力。

       在完成所有的代码编写后,只需通过指定的命令来运行这个 PySpark 程序即可开始数据处理和分析过程。至此,我们已经完成了从基本的文件读取到数据分析的全过程,能够使用 PySpark 开发复杂应用,并且通过自定义 UDF 函数来处理各种特定需求。这个示例展示了 PySpark 的强大功能,使其成为大数据处理领域中不可或缺的工具。

分布式计算引擎 Flink/Spark on k8s 的实现对比以及实践

       分布式计算引擎 Flink和Spark在Kubernetes(k8s)上的实现和实践对比深入探讨。以前,它们主要依赖Hadoop生态的YARN,但现在转向k8s原生调度器,如Volcano和Yunikorn等。Flink和Spark在Kubernetes上的核心差异在于:

Native支持: Flink和Spark都直接向k8s申请资源,与YARN的AppMaster类似,但需要符合k8s的标准。

Spark on k8s: 提交作业与YARN类似,但命令略有不同,资源清理可通过k8s的owner reference机制自动执行。依赖管理可利用s3中转,PodTemplate支持自定义sidecar容器。

Flink on k8s: Flink的Application Mode无需指定TaskManager数量,资源清理通过JobManager Deployment实现,PodTemplate和RBAC支持与Spark类似。

       在实践中,Spark和Flink的生态各有局限。Spark的Pod缺乏容错性,Flink的Deployment语义可能导致JobManager反复重启。作业日志收集方面,Flink作业结束后无日志留存,Spark则保留Driver Pod日志。总的来说,两者在k8s生态中的实现虽然有差异,但都需结合其他工具如Prometheus进行监控和日志管理,以解决特定问题。

Spark原理详解

       Spark原理详解:

       Spark是一个专为大规模数据处理设计的内存计算框架,其高效得益于其核心组件——弹性数据分布集RDD。RDD是Spark的数据结构,它将数据存储在分布式内存中,通过逻辑上的集中管理和物理上的分布式存储,提供了高效并行计算的能力。

       RDD的五个关键特性如下:

       每个RDD由多个partition组成,用户可以指定分区数量,默认为CPU核心数。每个partition独立处理,便于并行计算。

       Spark的计算基于partition,算子作用于partition上,无需保存中间结果,提高效率。

       RDD之间有依赖性,数据丢失时仅重新计算丢失分区,避免全量重算。

       对于key-value格式的RDD,有Partitioner决定分片和数据分布,优化数据处理的本地化。

       Spark根据数据位置调度任务,实现“移动计算”而非数据。

       Spark区分窄依赖(一对一)和宽依赖(一对多),前者不涉及shuffle,后者则会根据key进行数据切分。

       Spark的执行流程包括用户提交任务、生成DAG、划分stage和task、在worker节点执行计算等步骤。创建RDD的方式多样,包括程序中的集合、本地文件、HDFS、数据库、NoSQL和数据流等。

       技术栈方面,Spark与HDFS、YARN、MR、Hive等紧密集成,提供SparkCore、SparkSQL、SparkStreaming等扩展功能。

       在编写Spark代码时,首先创建SparkConf和SparkContext,然后操作RDD进行转换和应用Action,最后关闭SparkContext。理解底层机制有助于优化资源使用,如HDFS文件的split与partition关系。

       搭建Spark集群涉及上传、配置worker和master信息,以及启动和访问。内存管理则需注意Executor的off-heap和heap,以及Spark内存的分配和使用。

Spark介绍和架构原理

       Spark集群是一个分布式计算框架,其核心在于分布式和计算框架两个概念。它为Spark应用程序提供基础服务,通过分布式计算能力,使应用程序能在集群上运行。Spark集群以弹性分布式数据集(RDD)为核心实现分布式计算,具有不可变、可分布式、可并行操作的特性。

       Spark集群展现出强大的兼容性,能够独立形成分布式计算集群,亦能集成其他分布式文件存储系统或服务,实现数据的分布式存储。例如,使用Standalone Spark可将数据本地化分布存储,或者将其分散在不同计算机上。此外,Spark还可以集成HDFS、Amazon S3、OpenStack Swift、Azure Blob Storage等,以实现高效的数据分布式存储。

       Spark集群作为分布式计算框架,通过Spark Core提供基础功能支持。针对不同数据类型,Spark提供一系列组件,例如Spark SQL处理结构化数据,Spark Streaming处理流数据。Spark Core主要组件包括Spark Context、Master、Worker、Driver和Executor。Spark Context作为与其他应用和组件连接Spark集群的入口,应用程序或组件通过Spark Context提交应用作业,在Spark Core中执行数据运算和操作。

       理解Spark框架、模块、组件、库和应用的关键在于将其视为一个全面的分布式计算平台,能够高效地处理和分析大规模数据集。Spark集群通过其核心RDD实现分布式计算,通过兼容性强的特性支持多种分布式存储解决方案,以及提供针对不同数据类型的专业组件,从而在数据处理和分析领域展现出了强大的性能和灵活性。