【江湖家具装修源码】【编程猫源码公开课1】【程序员交流论坛vue源码】mnn 源码卷积

来源:开源源码社区

1.MNN推理引擎框架简介

mnn 源码卷积

MNN推理引擎框架简介

       MNN推理引擎框架:轻盈的码卷端侧AI力量

       MNN,作为一款专为移动端设计的码卷高效AI推理引擎,已在多个主流应用中如手机淘宝、码卷天猫等大放异彩,码卷涵盖直播和搜索推荐等丰富场景。码卷它的码卷江湖家具装修源码强大性能源于其精心设计的整体方案,包括Offline Conversion(Converter模块,码卷包括Frontends和Graph Optimize)以及On-device Inference(预处理、码卷算子级优化和Backend Abstraction)三个关键部分。码卷

       Converter模块是码卷MNN的灵魂,它兼容多种训练框架,码卷对模型进行深度优化,码卷确保了跨平台的码卷编程猫源码公开课1兼容性。其中,码卷Pre-inference采用半自动搜索策略,码卷通过智能代价评估来选择最佳计算路径。针对卷积运算,MNN巧妙地结合kernel size和Winograd算法,实现动态决策,程序员交流论坛vue源码旨在最小化算法实现和硬件特性的总成本。计算方案的选择涵盖了Strassen算法(适用于1x1卷积)和Winograd转换(处理大kernel卷积),并且通过准备-执行解耦,预先评估内存需求,显著减少了运行时的内存管理开销,提升性能高达7%至8%的烽火战国网页游戏脚本源码CPU效率和%至%的GPU效率。

       进一步深入,MNN的优化策略包括:

计算方案选择: 根据卷积特性灵活运用Strassen算法和Winograd算法,实现低复杂度的处理。

准备-执行解耦: 优化内存管理,显著降低内存成本。

内核优化: 采用Winograd优化算法,诛仙3源码修改版提高执行效率。

块划分与Pipelining: 在Winograd卷积中,通过块划分和延迟隐藏,提升计算性能。

Hadamard product优化: 转换为Dot product,减少内存访问,提升数据利用效率。

MNN数据布局NC4HW4: 利用CPU向量寄存器,进一步提升CPU性能。

Winograd generator: 提供高度灵活的适应性,适应不同硬件需求。

大矩阵乘优化: 通过Strassen算法,减少计算负担。

Backend Abstraction: 统一的接口支持多种硬件和库,简化开发,支持混合调度,增强兼容性。

       在Pre-Inference阶段,MNN已经预先配置了最优的后端配置,允许在单个Session内混合执行不同后端操作,进一步提升了资源利用率。

       轻量化设计是MNN的另一大亮点,每个后端独立工作,接口标准化,当某个后端在特定设备上不支持时,可以轻松剔除相关组件,保持应用体积小巧,适应多样的设备环境。

文章所属分类:热点频道,点击进入>>