1.开源数据质量解决方案 Apache Griffin - 安装篇
2.Hadoop3.3.5集成Hive4+Tez-0.10.2+iceberg踩坑过程
3.Alluxio 客户端源码分析
4.Hudi 基础入门篇
开源数据质量解决方案 Apache Griffin - 安装篇
本文将详细介绍如何安装开源数据质量解决方案Apache Griffin。下载首先,源码源码我们需要从GitHub获取源码,下载推荐使用分支griffin-0.2.0-incubating-rc4或tag=griffin-0.2.0-incubating。源码源码 安装前,下载请访问官方文档进行参考。源码源码看懂spark源码尽管官方文档不够详细,下载且部分内容可能与实际代码不一致,源码源码但在安装前阅读代码将有助于理解安装过程。下载 安装流程如下: 安装代码模块前,源码源码确保已按照代码提示修改`env.json`文件。下载特别注意,源码源码将`mail`和`sms`配置从数组改为单个对象,下载尽管这两个配置在当前版本中未使用,源码源码可能为未来添加报警功能预留。下载 打包并编译成jar文件,命令如下:`mvn clean package`。确保在项目根目录执行此命令。 上传编译后的jar文件到HDFS。服务端配置与启动
安装并配置数据库服务。对于PostgreSQL和MySQL,分别执行`init_quartz.sql`文件以初始化quartz表。 调整配置文件,包括`sparkJob.properties`、`application.properties`等。互动投影游戏源码具体配置如下: - `sparkJob.properties`中可能包括一些特定于Apache Griffin的配置项。 - `application.properties`中需要配置Hive元数据服务的地址,格式为`hive.metastore.uris = thrift://你的MetaStore地址:`。 启动服务,执行命令`java -jar service/target/service.jar`。前端UI配置与启动
运行`npm run start`以启动前端UI。 为了部署生产环境,运行`npm run build`以生成静态文件。将`dist`目录下的静态文件复制到Nginx或其他服务器上。部署测试
最后,访问部署的UI地址。页面成功打开后,配置测量和作业。如果系统运行正常,表示部署成功。 请确保在部署前阅读官方文档并参考代码以确保正确的安装和配置。安装过程可能需要根据实际环境进行调整。祝您安装成功!Hadoop3.3.5集成Hive4+Tez-0..2+iceberg踩坑过程
集成Hadoop 3.3.5与Hive 4.0.0-beta-1、Tez 0..2和Iceberg的过程中,尽管资料匮乏且充满挑战,但通过仔细研究和实践,最终成功实现了。以下是eclipse中附加源码关键步骤的总结:前置准备
Hadoop 3.3.5:由于Hive依赖Hadoop,确保已安装并配置。
Tez 0..2:作为Hive的计算引擎,需要先下载(Apache TEZ Releases)并可能因版本差异手动编译以适应Hadoop 3.3.5。
源码编译与配置
从release-0..2下载Tez源码,注意其依赖的Protocol Buffers 2.5.0。
修改pom.xml,调整Hadoop版本和protobuf路径,同时配置Maven仓库。
编译时,可以跳过tez-ui和tez-ext-service-tests以节省时间。
安装与配置
将编译后的Tez包上传至HDFS,并在Hadoop和Hive客户端配置tez-site.xml和环境变量。
Hive集成
Hive 4.0.0-beta-1:提供SQL查询和数据分析,已集成Iceberg 1.3无需额外配置。
下载Hive 4.0.0的稳定版本,解压并配置环境变量。
配置Hive-site.xml,包括元数据存储选择和驱动文件放置。
初始化Hive元数据并管理Hive服务。
使用Hive创建数据库、表,以及支持Iceberg的分区表。
参考资源
详尽教程:hive4.0.0 + hadoop3.3.4 集群安装
Tez 安装和部署说明
Hive 官方文档
Hadoop 3.3.5 集群设置
Alluxio 客户端源码分析
Alluxio是一个用于云分析和人工智能的开源数据编排技术,作为分布式文件系统,明日购物平台源码采用与HDFS相似的主从架构。系统中包含一个或多个Master节点存储集群元数据信息,以及Worker节点管理缓存的数据块。本文将深入分析Alluxio客户端的实现。
创建客户端逻辑在类alluxio.client.file.FileSystem中,简单示例代码如下。
客户端初始化包括调用FileSystem.Context.create创建客户端对象的上下文,在此过程中需要初始化客户端以创建与Master和Worker连接的连接池。若启用了配置alluxio.user.metrics.collection.enabled,将启动后台守护线程定时与Master节点进行心跳传输监控指标信息。同时,客户端初始化时还会创建负责重新初始化的后台线程,定期从Master拉取配置文件的哈希值,若Master节点配置发生变化,则重新初始化客户端,期间阻塞所有请求直到重新初始化完成。
创建具有缓存功能的客户端在客户端初始化后,调用FileSystem.Factory.create进行客户端创建。客户端实现分为BaseFileSystem、MetadataCachingBaseFileSystem和LocalCacheFileSystem三种,其中MetadataCachingBaseFileSystem和LocalCacheFileSystem对BaseFileSystem进行封装,提供元数据和数据缓存功能。BaseFileSystem的调用主要分为三大类:纯元数据操作、读取文件操作和写入文件操作。ios6.1.4 源码针对元数据操作,直接调用对应GRPC接口(例如listStatus)。接下来,将介绍客户端如何与Master节点进行通信以及读取和写入的流程。
客户端需要先通过MasterInquireClient接口获取主节点地址,当前有三种实现:PollingMasterInquireClient、SingleMasterInquireClient和ZkMasterInquireClient。其中,PollingMasterInquireClient是针对嵌入式日志模式下选择主节点的实现类,SingleMasterInquireClient用于选择单节点Master节点,ZkMasterInquireClient用于Zookeeper模式下的主节点选择。因为Alluxio中只有主节点启动GRPC服务,其他节点连接客户端会断开,PollingMasterInquireClient会依次轮询所有主节点,直到找到可以连接的节点。之后,客户端记录该主节点,如果无法连接主节点,则重新调用PollingMasterInquireClient过程以连接新的主节点。
数据读取流程始于BaseFileSystem.openFile函数,首先通过getStatus向Master节点获取文件元数据,然后检查文件是否为目录或未写入完成等条件,若出现异常则抛出异常。寻找合适的Worker节点根据getStatus获取的文件信息中包含所有块的信息,通过偏移量计算当前所需读取的块编号,并寻找最接近客户端并持有该块的Worker节点,从该节点读取数据。判断最接近客户端的Worker逻辑位于BlockLocationUtils.nearest,考虑使用domain socket进行短路读取时的Worker节点地址一致性。根据配置项alluxio.worker.data.server.domain.socket.address,判断每个Worker使用的domain socket路径是否一致。如果没有使用域名socket信息寻找到最近的Worker节点,则根据配置项alluxio.user.ufs.block.read.location.policy选择一个Worker节点进行读取。若客户端和数据块在同一节点上,则通过短路读取直接从本地文件系统读取数据,否则通过与Worker节点建立GRPC通信读取文件。
如果无法通过短路读取数据,客户端会回退到使用GRPC连接与选中的Worker节点通信。首先判断是否可以通过domain socket连接Worker节点,优先选择使用domain socket方式。创建基于GRPC的块输入流代码位于BlockInStream.createGrpcBlockInStream。通过GRPC进行连接时,每次读取一个chunk大小并缓存chunk,减少RPC调用次数提高性能,chunk大小由配置alluxio.user.network.reader.chunk.size.bytes决定。
读取数据块完成后或出现异常终止,Worker节点会自动释放针对该块的写入锁。读取异常处理策略是记录失败的Worker节点,尝试从其他Worker节点读取,直到达到重试次数上限或没有可用的Worker节点。
若无法通过本地Worker节点读取数据,则客户端尝试发起异步缓存请求。若启用了配置alluxio.user.file.passive.cache.enabled且存在本地Worker节点,则向本地Worker节点发起异步缓存请求,否则向负责读取该块数据的Worker节点发起请求。
数据写入流程首先向Master节点发送CreateFile请求,Master验证请求合法性并返回新文件的基本信息。根据不同的写入类型,进行不同操作。如果是THROUGH或CACHE_THROUGH等需要直接写入底层文件系统的写入类型,则选择一个Worker节点处理写入到UFS的数据。对于MUST_CACHE、CACHE_THROUGH、ASYNC_THROUGH等需要缓存数据到Worker节点上的写入类型,则打开另一个流负责将每个写入的块缓存到不同的Worker上。写入worker缓存块流程类似于读取流程,若写入的Worker与客户端在同一个主机上,则使用短路写直接将块数据写入Worker本地,无需通过网络发送到Worker上。数据完成写入后,客户端向Master节点发送completeFile请求,表示文件已写入完成。
写入失败时,取消当前流以及所有使用过的输出流,删除所有缓存的块和底层存储中的数据,与读取流程不同,写入失败后不进行重试。
零拷贝实现用于优化写入和读取流程中WriteRequest和ReadResponse消息体积大的问题,通过配置alluxio.user.streaming.zerocopy.enabled开启零拷贝特性。Alluxio通过实现了GRPC的MethodDescriptor.Marshaller和Drainable接口来实现GRPC零拷贝特性。MethodDescriptor.Marshaller负责对消息序列化和反序列化的抽象,用于自定义消息序列化和反序列化行为。Drainable扩展java.io.InputStream,提供将所有内容转移到OutputStream的方法,避免数据拷贝,优化内容直接写入OutputStream的过程。
总结,阅读客户端代码有助于了解Alluxio体系结构,明白读取和写入数据时的数据流向。深入理解Alluxio客户端实现对于后续阅读其他Alluxio代码非常有帮助。
Hudi 基础入门篇
为了深入理解Hudi这一湖仓一体的流式数据湖平台,本文将提供一个基础入门的步骤指南,从环境准备到编译与测试,再到实际操作。
在开始之前,首先需要准备一个大数据环境。第一步是安装Maven,这是构建和管理Hudi项目的关键工具。在CentOS 7.7版本的位操作系统上,通过下载并解压Maven软件包,然后配置系统环境变量,即可完成Maven的安装。确保使用的Maven版本为3.5.4,仓库目录命名为m2。
接下来,需要下载Hudi的源码包。通过访问Apache软件归档目录并使用wget命令下载Hudi 0.8版本的源码包。下载完成后,按照源码包的说明进行编译。
在编译过程中,将需要添加Maven镜像以确保所有依赖能够正确获取。完成编译后,进入$HUDI_HOME/hudi-cli目录并执行hudi-cli脚本。如果此脚本能够正常运行,说明编译成功。
为了构建一个完整的数据湖环境,需要安装HDFS。从解压软件包开始,配置环境变量,设置bin和sbin目录下的脚本与etc/hadoop下的配置文件。确保正确配置HADOOP_*环境变量,以确保Hadoop的各个组件可以正常运行。
下一步,需要配置hadoop-env.sh文件,以及核心配置文件core-site.xml和HDFS配置文件hdfs-site.xml。这些配置文件中包含了Hadoop Common模块的公共属性、HDFS分布式文件系统相关的属性,以及集群的节点列表。通过执行格式化HDFS和启动HDFS集群的命令,可以确保HDFS服务正常运行。
总结而言,Hudi被广泛应用于国内的大公司中,用于构建数据湖并整合大数据仓库,形成湖仓一体化的平台。这使得数据处理更加高效和灵活。
为了更好地学习Hudi,推荐基于0.9.0版本的资料,从数据湖的概念出发,深入理解如何集成Spark和Flink,并通过实际需求案例来掌握Hudi的使用。这些资料将引导用户从基础到深入,逐步掌握Hudi的核心功能和应用场景。
2024-11-27 16:24
2024-11-27 16:18
2024-11-27 15:51
2024-11-27 15:00
2024-11-27 13:59
2024-11-27 13:58