【php移动端客服源码】【修改asp源码文字】【nginx源码分析 书】undo 源码

时间:2024-11-27 02:58:18 来源:源码伪代码 分类:热点

1.详解 MySQL 的源码 undo log
2.MySQL 核心模块揭秘 | 12 期 | 创建 savepoint
3.PostgreSQL · 源码分析 · 回放分析(一)
4.重读Redux源码的感悟

undo 源码

详解 MySQL 的 undo log

       详解MySQL的undo log

       undo log是InnoDB引擎中的一种关键日志,它在事务修改数据记录前,源码先行保存该记录的源码原始状态(before image),以便在修改过程中遇到错误时恢复原始数据或允许其他事务读取。源码undo log的源码两个主要作用在于提供事务的回滚能力和支持并发读取。

       在事务执行时,源码php移动端客服源码以下四种操作会生成undo log:插入、源码更新、源码删除和选择。源码在MySQL的源码不同版本中,undo log的源码存储方式也有所变化。在早期版本中,源码undo log与系统表空间共存于同一个表空间内,源码直到MySQL 5.6.3版本引入了将undo log表空间独立出来的源码特性。这一特性在MySQL 5.7版本中得到进一步强化,源码引入了在线truncating undo tablespace功能。MySQL 8.0版本进一步改进undo log机制,使其更易于管理和优化性能。

       undo log主要储存在单独的undo tablespace中,这个表空间定义了回滚段(rollback segments),用于存放undo log。undo tablespace的结构通过源代码中的定义得以揭示,其中包括了用于管理回滚段的结构体。回滚段进一步管理着Rollback Segment Header Page,以确保数据的高效管理和回滚操作。

       undo log可以分为insert undo log和update undo log两种类型。对于insert操作,undo log记录插入数据的ID,以便在事务回滚时精确删除;对于update操作,undo log记录修改前的数据,回滚时只需反向更新。而对于delete和select操作,由于它们不涉及数据的修改,因此不需要undo log来支持回滚。

       undo log的修改asp源码文字处理逻辑复杂,但通过构建undo log链条,可以高效地实现事务的回滚。当事务开始时,会记录所有修改前的数据到undo log中。当事务提交后,这些undo log可能仍保留在系统中,以备在需要时执行回滚操作。在事务执行期间,其他事务可以读取undo buffer缓存中的数据,从而实现并发读取。当事务回滚时,系统会从undo buffer中读取数据,而不是直接从磁盘读取,从而提高了性能和效率。

       总的来说,undo log在MySQL中扮演着至关重要的角色,它不仅保证了事务的原子性和一致性,还支持并发读取,提高了数据库的性能和可靠性。理解undo log的工作原理对于深入掌握MySQL的事务处理机制至关重要。

MySQL 核心模块揭秘 | 期 | 创建 savepoint

       回滚操作,除了回滚整个事务,还可以部分回滚。部分回滚,需要保存点(savepoint)的协助。本文我们先看看保存点里面都有什么。

       作者:操盛春,爱可生技术专家,公众号『一树一溪』作者,专注于研究 MySQL 和 OceanBase 源码。 爱可生开源社区出品,原创内容未经授权不得随意使用,转载请联系小编并注明来源

       本文基于 MySQL 8.0. 源码,存储引擎为 InnoDB。nginx源码分析 书

       InnoDB 的事务对象有一个名为undo_no 的属性。事务每次改变(插入、更新、删除)某个表的一条记录,都会产生一条 undo 日志。这条 undo 日志中会存储它自己的序号。这个序号就来源于事务对象的 undo_no 属性。

       也就是说,事务对象的 undo_no 属性中保存着事务改变(插入、更新、删除)某个表中下一条记录产生的 undo 日志的序号。

       每个事务都维护着各自独立的 undo 日志序号,和其它事务无关。

       每个事务的 undo 日志序号都从 0 开始。事务产生的第 1 条 undo 日志的序号为 0,第 2 条 undo 日志的序号为 1,依此类推。

       InnoDB 的 savepoint 结构中会保存创建 savepoint 时事务对象的 undo_no 属性值。

       我们通过 SQL 语句创建一个 savepoint 时,server 层、binlog、InnoDB 会各自创建用于保存 savepoint 信息的结构。

       server 层的 savepoint 结构是一个SAVEPOINT 类型的对象,主要属性如下:

       binlog 的 savepoint 结构很简单,是一个 8 字节的整数。这个整数的值,是创建 savepoint 时事务已经产生的 binlog 日志的字节数,也是接下来新产生的 binlog 日志写入 trx_cache 的 offset。

       为了方便介绍,我们把这个整数值称为binlog offset。

       InnoDB 的 savepoint 结构是一个trx_named_savept_t 类型的对象,主要属性如下:

       创建 savepoint 时,server 层会分配一块 字节的内存,除了存放它自己的美国指标公式源码 SAVEPOINT 对象,还会存放 binlog offset 和 InnoDB 的 trx_named_savept_t 对象。

       server 层的 SAVEPOINT 对象占用这块内存的前 字节,InnoDB 的 trx_named_savept_t 对象占用中间的 字节,binlog offset 占用最后的 8 字节。

       客户端连接到 MySQL 之后,MySQL 会分配一个专门用于该连接的用户线程。

       用户线程中有一个m_savepoints 链表,用户创建的多个 savepoint 通过 prev 属性形成链表,m_savepoints 就指向最新创建的 savepoint。

       server 层创建 savepoint 之前,会按照创建时间从新到老,逐个查看链表中是否存在和本次创建的 savepoint 同名的 savepoint。

       如果在用户线程的 m_savepoints 链表中找到了和本次创建的 savepoint 同名的 savepoint,需要先删除 m_savepoints 链表中的同名 savepoint。

       找到的同名 savepoint,是 server 层的SAVEPOINT 对象,它后面的内存区域分别保存着 InnoDB 的 trx_named_savept_t 对象、binlog offset。

       binlog 是个老实孩子,乖乖的把 binlog offset 写入了 server 层为它分配的内存里。删除同名 savepoint 时,不需要单独处理 binlog offset。

       InnoDB 就不老实了,虽然 server 层也为 InnoDB 的 trx_named_savept_t 对象分配了内存,但是 InnoDB 并没有往里面写入内容。

       事务执行过程中,用户每次创建一个 savepoint,InnoDB 都会创建一个对应的 trx_named_savept_t 对象,并加入 InnoDB 事务对象的 trx_savepoints 链表的末尾。

       因为 InnoDB 自己维护了一个存放 savepoint 结构的链表,server 层删除同名 savepoint 时,InnoDB 需要找到这个链表中对应的 savepoint 结构并删除,流程如下:

       InnoDB 从事务对象的 trx_savepoints 链表中删除 trx_named_savept_t 对象之后,server 层接着从用户线程的asp下拉选框源码 m_savepoints 链表中删除 server 层的SAVEPOINT 对象,也就连带着清理了 binlog offset。

       处理完查找、删除同名 savepoint 之后,server 层就正式开始创建 savepoint 了,这个过程分为 3 步。

       第 1 步,binlog 会生成一个 Query_log_event。

       以创建名为test_savept 的 savepoint 为例,这个 event 的内容如下:

       binlog event 写入 trx_cache 之后,binlog offset 会写入 server 层为它分配的 8 字节的内存中。

       第 2 步,InnoDB 创建 trx_named_savept_t 对象,并放入事务对象的 trx_savepoints 链表的末尾。

       trx_named_savept_t 对象的 name 属性值是 InnoDB 的 savepoint 名字。这个名字是根据 server 层为 InnoDB 的 trx_named_savept_t 对象分配的内存的地址计算得到的。

       trx_named_savept_t 对象的savept 属性,是一个 trx_savept_t 类型的对象。这个对象里保存着创建 savepoint 时,事务对象中 undo_no 属性的值,也就是下一条 undo 日志的序号。

       第 3 步,把 server 层的 SAVEPOINT 对象加入用户线程的 m_savepoints 链表的尾部。

       server 层会创建一个SAVEPOINT 对象,用于存放 savepoint 信息。

       binlog 会把binlog offset 写入 server 层为它分配的一块 8 字节的内存里。

       InnoDB 会维护自己的 savepoint 链表,里面保存着trx_named_savept_t 对象。

       如果 m_savepoints 链表中存在和本次创建的 savepoint 同名的 savepoint, 创建新的 savepoint 之前,server 层会从链表中删除这个同名的 savepoint。

       server 层创建的 SAVEPOINT 对象会放入m_savepoints 链表的末尾。

       InnoDB 创建的 trx_named_savept_t 对象会放入事务对象的trx_savepoints 链表的末尾。

PostgreSQL · 源码分析 · 回放分析(一)

       在数据库运行中,可能遇到非预期问题,如断电、崩溃。这些情况可能导致数据异常或丢失,影响业务。为了在数据库重启时恢复到崩溃前状态,确保数据一致性和完整性,我们引入了WAL(Write-Ahead Logging)机制。WAL记录数据库事务执行过程,当数据库崩溃时,利用这些记录恢复至崩溃前状态。

       WAL通过REDO和UNDO日志实现崩溃恢复。REDO允许对数据进行修改,UNDO则撤销修改。REDO/UNDO日志结合了这两种功能。除了WAL,还有Shadow Pagging、WBL等技术,但WAL是主要方法。

       数据库内部,日志管理器记录事务操作,缓冲区管理器负责数据存储。当崩溃发生,恢复管理器读取事务状态,回放已提交数据,回滚中断事务,恢复数据库一致性。ARIES算法是日志记录和恢复处理的重要方法。

       长时间运行后崩溃,可能需要数小时甚至数天进行恢复。检查点技术在此帮助,将脏数据刷入磁盘,记录检查点位置,确保恢复从相对较新状态开始,同时清理旧日志文件。WAL不仅用于崩溃恢复,还支持复制、主备同步、时间点还原等功能。

       在记录日志时,WAL只在缓冲区中记录,直到事务提交时等待磁盘写入。LSN(日志序列号)用于管理,只在共享缓冲区中检查。XLog是事务日志,WAL是持久化日志。

       崩溃恢复中,checkpointer持续做检查点,加快数据页面更新,提高重启恢复速度。在回放时,数据页面不断向前更新,直至达到特定LSN。

       了解WAL格式和包含信息有助于理解日志内容。PG社区正在实现Zheap特性,改进日志格式。WAL文件存储在pg_wal目录下,大小为1GB,与时间线和LSN紧密关联。事务日志与WAL段文件相关联,根据特定LSN可识别文件名和位置。

       使用pg_waldump工具可以查看日志内容,理解一次操作记录。日志类型包括Standby、Heap、Transaction等,对应不同资源管理器。PostgreSQL 包含种资源管理器类型,涉及堆元组、索引、序列号操作。

       标准记录流程包括:读取数据页面到frame、记录WAL、进行事务提交。插入数据流程生成WAL,复杂修改如索引分裂需要记录多个WAL。

       崩溃恢复流程从控制文件中获取检查点位置,严格串行回放至崩溃前状态。redo回放流程与记录代码高度一致。在部分写问题上,FullPageWrite(FPW)策略记录完整数据页面,防止损坏。WAL错误导致部分丢失不影响恢复,数据库会告知失败。磁盘静默错误和内存错误需通过冗余校验解决。

       本文总结了数据库崩溃恢复原理,以及PostgreSQL日志记录和崩溃恢复实现。深入理解原理可提高数据库管理效率。下文将详细描述热备恢复和按时间点还原(PITR)方法。

重读Redux源码的感悟

       大道至简的createStore

       创造理解的%在createStore.js中体现,剩下%涉及中间件,整体来看软件开发追求高内聚,内耦合,以简洁面世。Redux源码由9个文件构成,包含中间件的代码。整体而言,Redux的深层含义超出了源码大小所能体现,业界常言“Redux是百行代码千行文档”,强调其复杂性。

       回到createStore.js,剥离中间件影响,仅留下核心代码骨架。最终返回的对象即store,提供了常用API。通过观察者模式或发布/订阅模式理解此框架,但要认识到Redux并非仅此,它结合现代前端开发与函数式编程,带来限制与便利,如纯函数要求、测试便利性、功能解耦及性能优化。

       实现撤销功能(undo)示例,通过高阶reducer存储过往状态值,结合Redux实现撤销与重做。函数式编程的FP特性,使实现变得可能。

       combineReducer利用闭包概念,接收多个reducer,生成单个reducer,可遍历执行所有reducer。若两个reducer同时处理相同type的action,它们都会执行更新状态。此特性可能带来冲突,需合理命名以避免问题。

       使用CLI工具搭建开发环境可能耗时,codesandbox.io提供多种框架支持及快速加载依赖,适合灵感突发时快速测试代码。

       在命名Action时,采用namespace前缀(如/或@)可避免重复,有助于清晰管理状态与减少冲突。

       compose方法实现多个方法串联执行,功能强大,易于实现并用于中间件处理。在Redux中,中间件处理Action,与服务器端处理request、response的Koa或Express不同,但核心原理相似,利用compose方法串联功能。

       中间件本质为方法代理,通过增强原方法执行前后添加操作,实现AOP。在Redux中,中间件位于store.dispatch之前,通过代理dispatch实现场景扩展与功能增强。理解中间件需关注enhancer参数及createStore方法传递,最后实现store与中间件串联。

       以redux-thunk为例,底层参数接收中间件API,只传递store的getState和dispatch方法,遵循特定逻辑处理action,提供方法执行选择与状态管理。中间件使用时需阅读文档,理解其规范与实现细节。

       综上,Redux源码展示了现代前端开发与函数式编程的结合,从createStore、combineReducer到中间件,提供了高效状态管理与功能扩展。理解其核心概念与实现机制,有助于深入应用与开发。