1.LevelDB 源码剖析1 -- 原理
2.大数据笔试真题集锦---第五章:Hive面试题
3.hbase特性有哪些
LevelDB 源码剖析1 -- 原理
LSM-Tree,码版全称Log-Structured Merge Tree,码版被广泛应用于数据库系统中,码版如HBase、码版Cassandra、码版LevelDB和SQLite,码版lua电视源码下载甚至MongoDB 3.0也引入了可选的码版LSM-Tree引擎。这种数据结构旨在提供优于传统B+树或ISAM(Indexed Sequential Access Method)方法的码版写入吞吐量,通过避免随机的码版本地更新操作实现。
LSM-Tree的码版核心思想基于磁盘性能的特性:随机访问速度远低于顺序访问,三个数量级的码版差距。因此,码版简单地将数据附加至文件尾部(日志或堆文件策略)可以提供接近理论极限的码版写入吞吐量。尽管这种方法足够简单且性能良好,码版但它有一个明显的码版缺点:从日志中随机读取数据需要花费更多时间,因为需要按时间顺序从近及远扫描日志直至找到所需键。因此,日志策略仅适用于简单的数据访问场景。
为了应对更复杂的读取需求,如基于键的map详细源码搜索、范围搜索等,LSM-Tree引入了一种改进策略,通过创建一系列排序文件来存储数据,每次写入都会生成一个新的文件,同时保留了日志系统优秀的写性能。在读取数据时,系统会检查所有文件,并定期合并文件以减少文件数量,从而提高读取性能。
在LSM-Tree的基本算法中,写入数据按照顺序保存到一组较小的排序文件中。每个文件代表了一段时间内的数据变更,且在写入前进行排序。内存表作为写入数据的缓冲区,用于保持键值的顺序。当内存表填满后,已排序的数据刷新到磁盘上的新文件。系统会周期性地执行合并操作,选择一些文件进行合并,源码插件制作以减少文件数量和删除冗余数据,同时维持读取性能。
读取数据时,系统首先检查内存缓冲区,若未找到目标键,则以反向时间顺序检查各个文件,直到找到目标键。合并操作通过定期将文件合并在一起,控制文件数量和读取性能,即使文件数量增加,读取性能仍可保持在可接受范围内。通过使用内存中保存的页索引,可以优化读取操作,尤其是在文件末尾保留索引块,这通常比直接二进制搜索更高效。
为了减少读取操作时访问的文件数量,新实现采用了分级合并(Leveled Compaction),即基于级别的文件合并策略。这不仅减少了最坏情况下需要访问的厦门棋牌源码文件数量,还减少了单次压缩的副作用,同时提供更好的读取性能。分级合并与基本合并的主要区别在于文件合并的策略,这使得工作负载扩展合并的影响更高效,同时减少总空间需求。
大数据笔试真题集锦---第五章:Hive面试题
我会不间断地更新维护,希望对正在寻找大数据工作的朋友们有所帮助。 第五章目录 第五章 Hive 5.1 Hive 运行原理(源码级) 1.1 reduce端join 在reduce端,对两个表的数据分别标记tag,发送数据。根据分区分组规则获取相同key的数据,再根据tag进行join操作,完成实际连接。 1.2 map端join 将小表复制到每个map task的内存中,仅扫描大表,对大表中key在小表中存在时进行join操作。使用DistributedCache.addCacheFile设置小表,通过标准IO获取数据。 1.3 semi join 先将参与join的来来推源码表1的key复制到表3中,复制多份到各map task,过滤不在新表3的表2数据,最后进行reduce。 5.2 Hive 建表5.3.1 传统方式建表
定义数据类型,如:TINYINT, STRING, TIMESTAMP, DECIMAL。 使用ARRAY, MAP, STRUCT结构。5.3.2 CTAS查询建表
创建表时指定表名、存储格式、数据来源查询语句。 缺点:默认数据类型范围限制。5.3.3 Like建表
通过复制已有表的结构来创建新表。5.4 存储格式和压缩格式
选择ORC+bzip/gzip作为源存储,ORC+Snappy作为中间存储。 分区表单文件不大采用gzip压缩,桶表使用bzip或lzo支持分片压缩。 设置压缩参数,如"orc.compress"="gzip"。5.5 内部表和外部表
外部表使用external关键字和指定HDFS目录创建。 内部表在创建时生成对应目录的文件夹,外部表以指定文件夹为数据源。 内部表删除时删除整个文件夹,外部表仅删除元数据。5.6 分区表和分桶表
分区表按分区字段拆分存储,避免全表查询,提高效率。 动态分区通过设置参数开启,根据字段值决定分区。 分桶表依据分桶字段hash值分组拆分数据。5.7 行转列和列转行
行转列使用split、explode、laterview,列转行使用concat_ws、collect_list/set。5.8 Hive时间函数
from_unixtime、unix_timestamp、to_date、month、weekofyear、quarter、trunc、current_date、date_add、date_sub、datediff。 时间戳支持转换和截断,标准格式为'yyyy-MM-dd HH:mm:ss'。 month函数基于标准格式截断,识别时截取前7位。5.9 Hive 排名函数
row_number、dense_rank、rank。5. Hive 分析函数:Ntile
效果:排序并分桶。 ntile(3) over(partition by A order by B)效果,可用于取前%数据统计。5. Hive 拉链表更新
实现方式和优化策略。5. Hive 排序
order by、order by limit、sort by、sort by limit的原理和应用场景。5. Hive 调优
减少distinct、优化map任务数量、并行度优化、小文件问题解决、存储格式和压缩格式设置。5. Hive和Hbase区别
Hive和Hbase的区别,Hive面向分析、高延迟、结构化,Hbase面向编程、低延迟、非结构化。5. 其他
用过的开窗函数、表join转换原理、sort by和order by的区别、交易表查询示例、登录用户数量查询、动态分区与静态分区的区别。hbase特性有哪些
HBase的特性包括以下几个方面:高性能的数据写入
HBase具有非常强的数据写入性能。其基于LSM树结构,数据被随机地分布在整个集群的多个节点上,这使得数据写入时能够并行处理,大大提高了写入性能。同时,HBase支持大量的并发写入操作,使得它在大数据环境下表现优异。
灵活的表结构设计
HBase是一个非关系型的数据库,它的表结构非常灵活。每个表可以拥有多个列族,每个列族下的数据可以有不同的存储特性。这种灵活性使得HBase能够适应各种类型的数据存储需求,同时也方便了对数据的扩展和管理。
强大的可扩展性
HBase是基于Hadoop的分布式文件系统HDFS构建的,具有天然的分布式特性。通过增加节点的方式,HBase可以很容易地扩展其存储能力和处理能力。这使得HBase能够在处理海量数据的同时保持高性能。
快速的数据检索
虽然HBase是一个面向列的数据库,但它的查询性能同样出色。HBase支持高效的范围查询和基于列属性的查询,可以快速定位到特定的数据行。同时,由于数据的分布式存储和处理,即使在大量数据中查询,也能保持较高的效率。
高可用性
HBase支持集群部署,数据可以在多个节点上进行备份和复制。即使部分节点出现故障,也能保证数据的可用性和系统的稳定运行。这种高可用性使得HBase在大数据处理中非常可靠。而且由于其开放源代码的特性,任何开发者都可以对HBase进行开发和优化,使其更加适应各种应用场景的需求。