皮皮网
皮皮网

【博彩真人源码】【pthread exit 源码】【可痕源码】android 系统 源码

来源:群控+源码 发表时间:2024-11-30 03:48:37

1.❤️ Android 源码解读-从setContentView深入了解 Window|Activity|View❤️
2.Android 源码根目录介绍
3.Android-Fragment源码分析
4.简述android源代码的统源编译过程

android 系统 源码

❤️ Android 源码解读-从setContentView深入了解 Window|Activity|View❤️

       Android系统中,Window、统源Activity、统源View之间的统源关系是紧密相连且相互作用的。了解这三者之间的统源关系,有助于深入理解Android应用的统源博彩真人源码渲染和交互机制。

       在Android中,统源通常在创建Activity时会调用`setContentView()`方法,统源以指定显示的统源布局资源。这个方法主要作用是统源将指定的布局添加到一个名为`DecorView`的容器中,并最终将其显示在屏幕上。统源这一过程涉及到多个组件的统源交互,下面分步骤解析。统源

       在`Activity`类中,统源`setContentView()`方法调用`getWindow()`方法获取`Window`对象,统源而`Window`对象在`Activity`的`attach()`方法中被初始化。`Window`对象是一个抽象类,其默认实现为`PhoneWindow`,这是Android特定的窗口实现。

       `PhoneWindow`在创建时会通过`setWindowManager()`方法与`WindowManager`进行关联。`WindowManager`是系统级组件,用于管理所有的窗口,包括窗口的创建、更新、删除等操作。`WindowManager`的管理最终由`WindowManagerService`(WMS)执行,这是一个运行在系统进程中的服务。

       在`PhoneWindow`中,`installDecor()`方法会初始化`DecorView`和`mContentParent`。`mContentParent`是pthread exit 源码一个`ViewGroup`,用于存放`setContentView()`传入的布局。通过`mLayoutInflater`的`inflate()`方法,将指定的布局资源添加到`mContentParent`中。

       `DecorView`是一个特殊的`FrameLayout`,包含了`mContentParent`。在完成布局的添加后,`DecorView`本身并没有直接与`Activity`建立联系,也没有被绘制到屏幕上显示。`DecorView`的绘制和显示发生在`Activity`的`onResume()`方法执行后,这时`Activity`中的内容才真正可见。

       当`Activity`执行到`onCreate()`阶段时,其内容实际上并没有显示在屏幕上,直到执行到`onResume()`阶段,`Activity`的内容才被真正显示。这一过程涉及到`ActivityThread`中的`handleResumeActivity()`方法,该方法会调用`WindowManager`的`addView()`方法,将`DecorView`添加到`WindowManagerService`中,完成`DecorView`的绘制和显示。

       `WindowManagerService`通过`addView()`方法将`DecorView`添加到显示队列中,并且在添加过程中,会创建关键的`ViewRootImpl`对象,进一步管理`DecorView`的布局、测量和绘制。`ViewRootImpl`会调用`mWindowSession`的`addToDisplay()`方法,将`DecorView`添加到真正的显示队列中。

       `mWindowSession`是`WindowManagerGlobal`中的单例对象,其内部实际上是一个`IWindowSession`类型,通过`AIDL`接口与系统进程中的`Session`对象进行通信,最终实现`DecorView`的可痕源码添加和显示。

       通过`setView()`方法的实现,可以看到除了调用`IWindowSession`进行跨进程添加`View`之外,还会设置输入事件处理。当触屏事件发生时,这些事件首先通过驱动层的优化计算,通过`Socket`跨进程通知`Android Framework`层,最终触屏事件会通过输入管道传送到`DecorView`处理。

       在`DecorView`内部,触屏事件会通过`onProcess`方法传递给`mView`,即`PhoneWindow`中的`DecorView`。最终,事件传递到`PhoneWindow`中的`View.java`实现的`dispatchPointerEvent()`方法,并调用`Window.Callback`的`dispatchTouchEvent(ev)`方法。对于`Activity`来说,`dispatchTouchEvent()`方法最终还是会调用`PhoneWindow`的`superDispatchTouchEvent()`,然后传递给`DecorView`的`superDispatchTouchEvent()`方法,完成事件的分发和处理。

       综上所述,通过`setContentView()`的过程,我们可以清晰地看到`Activity`、`Window`、`View`之间的交互关系。整个过程主要由`PhoneWindow`组件主导,而`Activity`主要负责提供要显示的布局资源,其与屏幕的直接交互则通过`WindowManager`和`WindowManagerService`实现。

Android 源码根目录介绍

       整体目录结构概览

       深入解析Android源码根目录的架构,让我们一起了解其组成部分及其作用。

       在Android源码根目录中,首先映入眼帘的抑郁测试源码是“art”目录,其全称是Android Runtime,负责Android系统的运行时环境,是Android应用执行的核心。

       紧接着是“bionic”目录,内部包含了基础的库文件,这些库为Android系统的运行提供底层支持。

       “bootable”目录,包含的是Android系统启动时需要的文件和目录,对于系统启动至关重要。

       “build”目录,集中了构建Android系统的相关脚本和工具,开发者通过它来构建和测试Android系统。

       “dalvik”目录,这里是Dalvik虚拟机的文件存放地,是早期Android系统中负责执行应用代码的主要虚拟机。

       “developers”和“development”目录,专为开发者准备,包含了开发工具、文档等资源。

       “device”目录,包含了针对不同硬件设备的配置文件和驱动程序,确保Android系统能够适配各种硬件。

       “external”目录,存放了第三方库和工具,为Android系统提供额外的功能支持。

       “frameworks”目录,包含了Android系统的框架层,为应用提供基础的API和组件。

       “hardware”目录,matlab corrcoef源码集成了硬件相关的代码和库文件,确保与硬件设备的交互。

       “libcore”目录,存储了Android核心库文件,为系统提供关键的基础支持。

       “libnativehelper”目录,存放了用于Android应用中调用本地代码的辅助库。

       “ndk”目录,全称为Native Development Kit,是为开发本地代码(C/C++)的Android应用准备的。

       “packages”目录,包含了系统的应用包,包括预装应用和系统服务。

       “pdk”目录,全称为Power Development Kit,提供与系统电源管理相关的代码和工具。

       “platform_testing”目录,集中了用于测试Android系统的工具和脚本。

       “prebuilts”目录,存放了构建工具和库的预编译版本,减少构建过程的时间。

       “sdk”目录,包含了Android SDK(Software Development Kit),是开发者构建和测试应用的重要工具。

       “system”目录,包含了系统层的应用程序和系统文件,是Android系统运行的基础。

       “test”目录,集中了用于验证系统和应用功能的测试代码。

       “tools”目录,包含了开发工具和脚本,帮助开发者进行代码调试、构建和分析。

       “vendor”目录,存放了设备制造商提供的驱动程序和其他系统文件。

       “cts”目录,全称为Compatibility Test Suite,包含了用于验证系统兼容性的测试用例。

       最后,不要忘记“out”目录,它是编译过程中产生的临时目录,包含了编译结果。

       以上是Android源码根目录的基本介绍,深入了解这些目录及其内容,有助于开发者更高效地进行Android应用的开发和调试。

Android-Fragment源码分析

       Fragment是Android系统为了提高应用性能和降低资源消耗而引入的一种更轻量级的组件,它允许开发者在同一个Activity中加载多个UI组件,实现页面的切换与回退。Fragment可以看作是Activity的一个子部分,它有自己的生命周期和内容视图。

       在实际应用中,Fragment可以用于构建动态、可复用的UI组件,例如聊天应用中,左右两边的布局(联系人列表和聊天框)可以分别通过Fragment来实现,通过动态地更换Fragment,达到页面的切换效果,而无需整个页面的刷新或重新加载。

       在实现上,v4.Fragment与app.Fragment主要区别在于兼容性。app.Fragment主要面向Android 3.0及以上版本,而v4.Fragment(即支持包Fragment)则旨在提供向下兼容性,支持Android 1.6及更高版本。使用v4.Fragment时,需要继承FragmentActivity并使用getSupportFragmentManager()方法获取FragmentManager对象。尽管从API层面看,两者差异不大,但官方倾向于推荐使用v4.Fragment,以确保更好的兼容性和性能优化。

       下面的示例展示了如何使用v4.Fragment实现页面的加载与切换。通过创建Fragment和FragmentActivity,我们可以加载特定的Fragment,并在不同Fragment间进行切换。

       在FragmentDemo的布局文件中,定义了Fragment容器。

       在Fragment代码中,定义了具体的业务逻辑和视图渲染,如初始化界面数据、响应用户事件等。

       在Activity代码中,通过FragmentManager的beginTransaction方法,加载指定的Fragment实例,并在需要时切换到不同Fragment,实现页面的动态更新。

       从官方的建议来看,v4.Fragment已经成为推荐的使用方式,因为它在兼容性、性能和功能方面都更优于app.Fragment。随着Android系统的迭代,使用v4.Fragment能确保应用在不同版本的Android设备上均能获得良好的运行效果。

       在Fragment的生命周期管理中,Fragment与Activity的生命周期紧密关联。通过FragmentManager的操作,如commit、replace等,可以将Fragment加入到Activity的堆栈中,实现页面的加载与切换。当用户需要返回时,系统会自动将当前Fragment从堆栈中移除,从而实现页面的回退。

       深入Fragment源码分析,我们可以了解其如何在底层实现这些功能。Fragment的初始化、加载、切换等过程涉及到多个关键类和方法,如FragmentManager、FragmentTransaction、BackStackRecord等。通过这些组件的协作,Fragment能够实现与Activity的生命周期同步,确保用户界面的流畅性和高效性。

       在实际开发中,使用Fragment可以显著提高应用的响应速度和用户体验。通过动态加载和切换不同的Fragment,开发者可以构建出更加灵活、高效的应用架构,同时减少资源的消耗,提高应用的性能。

简述android源代码的编译过程

       编译Android源代码是一个相对复杂的过程,涉及多个步骤和工具。下面我将首先简要概括编译过程,然后详细解释每个步骤。

       简要

       Android源代码的编译过程主要包括获取源代码、设置编译环境、选择编译目标、开始编译以及处理编译结果等步骤。

       1. 获取源代码:编译Android源代码的第一步是从官方渠道获取源代码。通常,这可以通过使用Git工具从Android Open Source Project(AOSP)的官方仓库克隆代码来完成。命令示例:`git clone /platform/manifest`。

       2. 设置编译环境:在编译之前,需要配置合适的编译环境。这通常涉及安装特定的操作系统(如Ubuntu的某些版本),安装必要的依赖项(如Java开发工具包和Android Debug Bridge),以及配置特定的环境变量等。

       3. 选择编译目标:Android支持多种设备和配置,因此编译时需要指定目标。这可以通过选择特定的设备配置文件(如针对Pixel手机的`aosp_arm-eng`)或使用通用配置来完成。选择目标后,编译系统将知道需要构建哪些组件和变种。

       4. 开始编译:设置好环境并选择了编译目标后,就可以开始编译过程了。在源代码的根目录下,可以使用命令`make -jN`来启动编译,其中`N`通常设置为系统核心数的1~2倍,以并行处理编译任务,加快编译速度。编译过程中,系统将根据Makefile文件和其他构建脚本,自动下载所需的预构建二进制文件,并编译源代码。

       5. 处理编译结果:编译完成后,将在输出目录(通常是`out/`目录)中生成编译结果。这包括可用于模拟器的系统镜像、可用于实际设备的OTA包或完整的系统镜像等。根据需要,可以进一步处理这些输出文件,如打包、签名等。

       在整个编译过程中,还可能遇到各种依赖问题和编译错误,需要根据错误信息进行调试和解决。由于Android源代码庞大且复杂,完整的编译可能需要数小时甚至更长时间,因此耐心和合适的硬件配置也是成功编译的重要因素。

相关栏目:综合

.重点关注