【魔力相册 源码】【武汉千锋源码】【鼎捷mes源码】hbase 源码安装
1.zookeeper开山篇-编译安装与zk基础命令使用
2.LevelDB 源码剖析1 -- 原理
3.大数据笔试真题集锦---第五章:Hive面试题
zookeeper开山篇-编译安装与zk基础命令使用
随着软件规模的码安扩张,分布式服务逐渐成为解决并发流量问题的码安主流选择,Apache的码安Zookeeper作为一款成熟的分布式协调组件,为分布式应用提供一致性服务。码安本文将带你步入Zookeeper的码安学习之旅,从基础安装和命令使用开始。码安魔力相册 源码
Zookeeper是码安Apache的一个分布式应用程序协调服务,它扮演着配置管理、码安域名服务、码安分布式同步和组服务等角色,码安是码安Hadoop和Hbase的重要组成部分。它的码安主要作用是保证分布式系统中的数据一致性。
下载安装步骤有两个:首先,码安可从官网(mirrors.tuna.tsinghua.edu.cn...)下载最新版本的码安zookeeper-xxx.tar.gz,解压后将conf目录下的码安zoo_sample.cfg复制并重命名为zoo.cfg,配置dataDir和dataLogDir,然后双击bin目录下的zkServer.cmd启动服务。
另一种方法是下载zk源码,通过Ant进行编译。首先,根据开发环境和zk源码版本下载Ant,武汉千锋源码配置环境变量,然后在GitHub上选择相应的版本进行git下载。编译时需注意zk源码中的properties-maven-plugin和exec-maven-plugin插件配置,可能需要手动修改以适应本地环境。
启动单机版zk服务时,可能会遇到编译错误,需检查pom.xml文件和git.properties配置。成功编译后,通过zkCli.cmd客户端连接,通过ls、create、get、stat、delete等命令操作zk节点,实现基本的创建、读取、修改和删除功能。
本文仅是Zookeeper学习的入门,后续还将深入探讨更多命令和配置细节,欢迎持续关注。鼎捷mes源码作者:享学课堂online,来源:今日头条。
LevelDB 源码剖析1 -- 原理
LSM-Tree,全称Log-Structured Merge Tree,被广泛应用于数据库系统中,如HBase、Cassandra、LevelDB和SQLite,甚至MongoDB 3.0也引入了可选的LSM-Tree引擎。这种数据结构旨在提供优于传统B+树或ISAM(Indexed Sequential Access Method)方法的写入吞吐量,通过避免随机的本地更新操作实现。
LSM-Tree的核心思想基于磁盘性能的特性:随机访问速度远低于顺序访问,三个数量级的差距。因此,简单地将数据附加至文件尾部(日志或堆文件策略)可以提供接近理论极限的写入吞吐量。尽管这种方法足够简单且性能良好,但它有一个明显的缺点:从日志中随机读取数据需要花费更多时间,因为需要按时间顺序从近及远扫描日志直至找到所需键。因此,日志策略仅适用于简单的梅州到潮州源码数据访问场景。
为了应对更复杂的读取需求,如基于键的搜索、范围搜索等,LSM-Tree引入了一种改进策略,通过创建一系列排序文件来存储数据,每次写入都会生成一个新的文件,同时保留了日志系统优秀的写性能。在读取数据时,系统会检查所有文件,并定期合并文件以减少文件数量,从而提高读取性能。
在LSM-Tree的基本算法中,写入数据按照顺序保存到一组较小的排序文件中。每个文件代表了一段时间内的数据变更,且在写入前进行排序。内存表作为写入数据的缓冲区,用于保持键值的顺序。当内存表填满后,已排序的数据刷新到磁盘上的新文件。系统会周期性地执行合并操作,115资源系统源码选择一些文件进行合并,以减少文件数量和删除冗余数据,同时维持读取性能。
读取数据时,系统首先检查内存缓冲区,若未找到目标键,则以反向时间顺序检查各个文件,直到找到目标键。合并操作通过定期将文件合并在一起,控制文件数量和读取性能,即使文件数量增加,读取性能仍可保持在可接受范围内。通过使用内存中保存的页索引,可以优化读取操作,尤其是在文件末尾保留索引块,这通常比直接二进制搜索更高效。
为了减少读取操作时访问的文件数量,新实现采用了分级合并(Leveled Compaction),即基于级别的文件合并策略。这不仅减少了最坏情况下需要访问的文件数量,还减少了单次压缩的副作用,同时提供更好的读取性能。分级合并与基本合并的主要区别在于文件合并的策略,这使得工作负载扩展合并的影响更高效,同时减少总空间需求。
大数据笔试真题集锦---第五章:Hive面试题
我会不间断地更新维护,希望对正在寻找大数据工作的朋友们有所帮助。 第五章目录 第五章 Hive 5.1 Hive 运行原理(源码级) 1.1 reduce端join 在reduce端,对两个表的数据分别标记tag,发送数据。根据分区分组规则获取相同key的数据,再根据tag进行join操作,完成实际连接。 1.2 map端join 将小表复制到每个map task的内存中,仅扫描大表,对大表中key在小表中存在时进行join操作。使用DistributedCache.addCacheFile设置小表,通过标准IO获取数据。 1.3 semi join 先将参与join的表1的key复制到表3中,复制多份到各map task,过滤不在新表3的表2数据,最后进行reduce。 5.2 Hive 建表5.3.1 传统方式建表
定义数据类型,如:TINYINT, STRING, TIMESTAMP, DECIMAL。 使用ARRAY, MAP, STRUCT结构。5.3.2 CTAS查询建表
创建表时指定表名、存储格式、数据来源查询语句。 缺点:默认数据类型范围限制。5.3.3 Like建表
通过复制已有表的结构来创建新表。5.4 存储格式和压缩格式
选择ORC+bzip/gzip作为源存储,ORC+Snappy作为中间存储。 分区表单文件不大采用gzip压缩,桶表使用bzip或lzo支持分片压缩。 设置压缩参数,如"orc.compress"="gzip"。5.5 内部表和外部表
外部表使用external关键字和指定HDFS目录创建。 内部表在创建时生成对应目录的文件夹,外部表以指定文件夹为数据源。 内部表删除时删除整个文件夹,外部表仅删除元数据。5.6 分区表和分桶表
分区表按分区字段拆分存储,避免全表查询,提高效率。 动态分区通过设置参数开启,根据字段值决定分区。 分桶表依据分桶字段hash值分组拆分数据。5.7 行转列和列转行
行转列使用split、explode、laterview,列转行使用concat_ws、collect_list/set。5.8 Hive时间函数
from_unixtime、unix_timestamp、to_date、month、weekofyear、quarter、trunc、current_date、date_add、date_sub、datediff。 时间戳支持转换和截断,标准格式为'yyyy-MM-dd HH:mm:ss'。 month函数基于标准格式截断,识别时截取前7位。5.9 Hive 排名函数
row_number、dense_rank、rank。5. Hive 分析函数:Ntile
效果:排序并分桶。 ntile(3) over(partition by A order by B)效果,可用于取前%数据统计。5. Hive 拉链表更新
实现方式和优化策略。5. Hive 排序
order by、order by limit、sort by、sort by limit的原理和应用场景。5. Hive 调优
减少distinct、优化map任务数量、并行度优化、小文件问题解决、存储格式和压缩格式设置。5. Hive和Hbase区别
Hive和Hbase的区别,Hive面向分析、高延迟、结构化,Hbase面向编程、低延迟、非结构化。5. 其他
用过的开窗函数、表join转换原理、sort by和order by的区别、交易表查询示例、登录用户数量查询、动态分区与静态分区的区别。