1.hdl_graph_slam|后端优化|hdl_graph_slam_nodelet.cpp|源码解读(四)
2.ROS博客基于ROS的源码自动驾驶数据集可视化项目(附源代码)
3.Autoware.universe 源码解读(一)
4.学习笔记ROS2纯小白 - MoveIt!(humble)安装、初识与C++实现运动规划
5.cruise-automation Webviz 简介
6.单目USB摄像和Intel Realsense D435i 头+ Apriltag_ros配置和实现对相机姿态的源码估计
hdl_graph_slam|后端优化|hdl_graph_slam_nodelet.cpp|源码解读(四)
hdl_graph_slam源码解读(八):后端优化后端概率图构建核心:hdl_graph_slam_nodelet.cpp
整体介绍 这是整个系统建图的核心,综合所有信息进行优化。源码所有的源码信息都会发送到这个节点并加入概率图中。 包含信息 1)前端里程计传入的源码位姿和点云 2)gps信息 3)Imu信息 4)平面拟合的参数信息 处理信息步骤 1)在对应的callback函数中接收信息,并放入相应的源码在线授课软件源码队列 2)根据时间戳对队列中的信息进行顺序处理,加入概率图 其他内容 1)执行图优化,源码这是源码一个定时执行的函数,闭环检测也在这个函数里 2)生成全局地图并定时发送,源码即把所有关键帧拼一起,源码得到全局点云地图,源码然后在一个定时函数里发送到rviz上去 3)在rviz中显示顶点和边,源码如果运行程序,源码会看到rviz中把概率图可视化了 关键帧同步与优化 cloud_callback cloud_callback(const nav_msgs::OdometryConstPtr& odom_msg,源码const sensor_msgs::PointCloud2::ConstPtr& cloud_msg) 该函数主要是odom信息与cloud信息的同步,同步之后检查关键帧是源码否更新。 关键帧判断:这里主要看关键帧设置的这两个阈值keyframe_delta_trans、keyframe_delta_angle 变成关键帧的要求就是:/hdl_graph_slam/include/hdl_graph_slam/keyframe_updater.hpp 优化函数 optimization_timer_callback(const ros::TimerEvent& event) 函数功能:将所有的位姿放在posegraph中开始优化 loop detection 函数:主要就是将当前帧和历史帧遍历,寻找loop。 闭环匹配与信息矩阵计算 匹配与闭环检测 潜在闭环完成匹配(matching 函数) 不同loop的信息矩阵计算(hdl_graph_slam/information_matrix_calculator.cpp) gps对应的信息矩阵 hdl_graph_slam/graph_slam.cpp 添加地面约束 使用add_se3_plane_edge函数的代码 执行图优化 优化函数optimization_timer_callback 执行图优化,闭环检测检测闭环并加到了概率图中,优化前 生成简化版关键帧,KeyFrameSnapshot用于地图拼接 生成地图并定时发送 生成地图:简化版关键帧拼接 定时发送:src/hdl_graph_slam_nodelet.cpp文件中 系统性能与扩展性 hdl_graph_slam性能问题在于帧间匹配和闭环检测精度不足,系统代码设计好,模块化强,易于扩展多传感器数据融合。 总结 hdl_graph_slam后端优化是关键,涉及大量信息融合与概率图构建。系统设计清晰,扩展性强,但在性能上需改进。ROS博客基于ROS的自动驾驶数据集可视化项目(附源代码)
项目简介
基于加州大学伯克利分校 MSC Lab的自动驾驶数据集,本项目旨在进行数据集的可视化。项目源代码已上传至 GitHub,英文版文章与演示视频也已准备就绪。
数据集展示
左侧展示了GPS信号的可视化,通过 Mapviz 工具,阿里iot项目源码将行驶过程中走过的路径显示出来,左上角则呈现了车前摄像头的视角。右侧是自定义的可视化,利用绿色代表 y 轴正方向,蓝色表示 x 轴正方向。紫色圆点表示汽车行驶过程中各个方向的加速度信息,天蓝色箭头指示汽车前进方向,绿色则代表不同强度的加速度。
问题与解决方案
在使用 Mapviz 可视化 GPS 信号时,遇到了数据格式不匹配的问题。通过在自定义的 package 中编写 `trans_GPS.cpp` 文件,成功实现了数据格式转换,解决了数据可视化的问题。同时,还撰写了关于 Mapviz 的基础使用教程。
加速度信息的可视化涉及确定坐标轴方向、避免信息跳动以及直观显示加速度大小。通过在 RVIZ 中绘制 x 和 y 轴,并使用平滑器处理频繁读取的 IMU 数据,成功解决了这些问题。极坐标系的引入使得加速度大小的显示更为直观。
汽车前进方向的可视化涉及到姿态信息的获取与 RVIZ 显示角度的调整。通过分析 IMU 的 orientation 数据,并设置 marker 的 orientation 值,实现了方向的正确显示。
相机信息的可视化面临格式转换问题。通过使用 `image_transport` 包装解决了传感器数据格式不兼容的问题。
总结
在本项目中,通过学习与实践 ROS 相关知识,成功实现了自动驾驶数据集的可视化。接下来,将集中精力深入学习 OSM 的使用,并着手进行 GPS 定位与搜索的小项目开发。
Autoware.universe 源码解读(一)
在Autoware的自动驾驶仿真软件中,launch文件起着至关重要的网易村庄源码代码作用。autoware.launch.xml是其中一个基础的launch文件,它使用XML语言编写,以定义启动ROS节点、参数和设置默认值。这个文件的核心结构包括version="1.0"(XML 1.0版本)和encoding="UTF-8"(UTF-8编码)。
文件的前半部分侧重于参数定义和设置,包括地图路径、车辆模型、传感器模型和点云容器,这些都可以通过传递参数进行灵活调整。例如,vehicle_id和launch_vehicle_interface是两个全局参数,vehicle_id默认值为环境变量VEHICLE_ID的值,而launch_vehicle_interface默认为true,表示是否启动车辆接口。
参数check_external_emergency_heartbeat控制外部紧急停车功能,当不需要时需将其设为false。system_run_mode和launch_system_monitor等参数分别定义了系统的运行模式和是否启动系统监视器。此外,rviz可视化工具的启用、rviz配置文件路径,以及感知模式的选择等也被详细定义。
launch文件中还包括一个include标签,引入了global_params.launch.py,该文件通过arg标签传递参数,以进行更精细的配置。例如,如果launch_vehicle设置为true,它将启动vehicle.launch.xml,并传递参数。
总的来说,autoware.launch.xml通过巧妙地定义和传递参数,灵活地控制和配置Autoware的各个子系统,以实现自动驾驶的模拟和测试。
学习笔记ROS2纯小白 - MoveIt!(humble)安装、套用小程序源码初识与C++实现运动规划
文章内容
前言
在本系列第四篇学习笔记中,我们重点介绍如何安装MoveIt、如何在RViz中使用MoveIt,以及如何通过C++程序加入障碍物并进行运动规划。经过一番波折,终于开始与机器人相关任务,尤其是RViz的可视化功能,让这一过程变得更为直观。在尝试配置环境时,由于系统误操作导致Ubuntu无法正常开机,最终花费半天时间重装系统,尽管过程坎坷,但这一经历让我们的技术积累更加坚实。
前作后续
在安装ROS 2和Colcon后,确保系统为最新版本并安装mixin Colcon和vsctool。接下来,创建一个Colcon工作空间并下载教程和剩余MoveIt源代码。由于网络环境因素,这一过程可能较为不稳定,需要反复尝试和优化配置。完成依赖项的控制后,使用Concol工作空间并进行相应的build和setup操作。将默认ROS 2中间件(RMW)更改为Cyclone DDS,以确保环境的兼容性。
使用Docker容器快速建立MoveIt环境,为后续机器人开发提供方便。
在RViz中使用MoveIt插件进行运动规划,通过交互设置机器人状态,测试规划器并进行可视化输出。在RViz中引入机器人模型,配置固定坐标系,进行机器人插件的详细配置。
在模拟环境中,与可视化机器人交互,调整姿态和运动轨迹。游资源码查询演示如何通过规划实现机器人从起始到目标位姿的运动,同时利用RViz工具可视化路径和操作流程。
通过C++程序实现MoveIt的运动规划功能,首先创建一个ROS节点和执行器,实现机器人运动控制。插入代码段,完成规划与执行,并在RViz中实时反馈。
进一步,实现视觉化功能,通过moveit_visual_tools插件增强机器人开发的可视化体验。在程序中添加依赖项,构建并初始化MoveItVisualTools,实现与RViz的交互。
在RViz中实现路径的可视化,通过封装函数处理视觉化信息,确保代码的简洁和高效。最后,通过配置和运行程序,观察RViz中的实时反馈,完成整个工作流程。
总结
通过本系列的学习笔记,我们系统地掌握了ROS 2环境的搭建、MoveIt的安装与使用、C++实现运动规划以及RViz的可视化技巧。尽管过程中遇到了挑战,如系统配置问题和网络环境的不稳定,但通过坚持不懈的努力,成功实现了从理论到实践的转变。这不仅加深了对机器人开发技术的理解,也锻炼了问题解决和调试能力。未来,我们将在实践中继续深化对这些技术的理解,为更复杂的机器人应用奠定坚实的基础。
cruise-automation Webviz 简介
cruise-automation项目旨在开发一系列与现有开源工具如rviz、rqt console、rqt_runtime_monitor、rostopic echo和rqt_plot相呼应的可视化面板。通过进一步的开发,添加了针对Cruise特定需求的自定义面板,远离传统工具,以更精细地满足工程师解决问题的需要,并保持对开放源代码机器人社区的实用性。随着定制化和对过时工具逐渐迁移,这些面板功能日益精进。 项目目标是替代ROS中的可视化工具,如rviz、rqt等。Webviz实现这一目标,提供直观且功能丰富的界面。在试用过程中,发现其稳定性高、加载速度快、使用便捷。以下是Webviz的安装和运行步骤,假设操作系统为Ubuntu .。 Webviz与ROS数据传递通过rosbridge_suite进行。对于实时显示数据(而非使用bag文件),需要安装rosbridge_suite。 Webviz启动默认使用websocket端口,无需调整,连接时会自动使用该端口。 安装nodejs时,遵循github.com/nodesource/d...指南,选择较旧版本(如v.x,避免新版本编译问题)。 接下是Webviz编译过程: 下载代码。 执行编译命令,确保根目录下安装了所有依赖。 再次执行编译。 运行编译好的程序,浏览器将直接打开预览界面(推荐使用Chrome浏览器)。 测试Webviz效果时,可使用两个示例topic:速腾的lidar数据和gnss定位信息(默认时间坐标,也可切换为xy坐标形式)。实测效果如图所示,展示了Webviz在可视化数据方面的强大能力。单目USB摄像和Intel Realsense Di 头+ Apriltag_ros配置和实现对相机姿态的估计
配置平台:ROS版本:noetic/melodic,Ubuntu:.LTS/.LTS
一:AprilTag_ros的配置
1.1 usb摄像头的安装和使用
1.1.1下载源码
1.1.2编译工作空间
1.1.3添加usb_cam属性文件
1.1.4编译usb_cam源码
回到工作空间的src文件中,再去usb_cam中进行编译
5.测试USB摄像头
1)运行ROS
回到usb_cam的launch文件夹中,运行usb_cam的功能包
1.2 AprilTag_ros包的安装
安装依赖库apriltag
编译依赖库apriltag
进入 apriltag 文件夹中,然后新建文件夹build
安装AprilTag_ros包
将源码拷贝到你的工作空间中的src工作目录下
回到工作空间进行编译
1.3 单目摄像机的标定
摄像机标定是通过寻找对象在图像与现实世界的转换数学关系,找出其定量的联系,从而实现从图像中测量出现实中实际数据的目的,基于此才能实现后面的位姿检测。
1.3.1安装标定功能包
1.3.2打开摄像头进行标定
第二条命令参数说明:size:棋盘内交叉点的个数,行*列square:一个格子的边长,单位是mimage:订阅摄像头发布的图像话题(ROS topic)camera:寻找相应的设备相机名(现实情况应该是/dev,仿真的话,不清楚)
摄像机的校准是以一个由黑白方块组成的棋盘为基准进行的,如图8-8所示。从下面的地址下载8x6国际象棋棋盘,并打印出来后将其贴到一个平坦的纸箱。有时也会打印成超过1米的棋盘,但这里用的是A4纸。作为参考,8x6棋盘横向有9个方块,所以有8个交叉点,而竖向有7个方块,有6个交叉点,所以它被称为8x6棋盘。
/AprilRobotic... Tag Size Definition 部分可以看到并排的6个二维码,下面的字符串(如:“Tagh” 和 “TagCircleh7”)就是二维码类型,直接替换即可。其他参数使用默认值即可。
2.配置 tags.yaml
这个文件只有两个标签可以编写。
这里面写要使用多少个二维码,apriltag_ros 允许一张中出现多个二维码,但一定要明确每个二维码类型,如果想要添加的话这样写就可以,但记得两个标签都要添加:
standalone_tags解释:
id:你给每个二维码的编号,可以从任意数字开始,只要你自己能区分哪个号是哪个二维码就好;
size:二维码的长度。这个值是需要手动测量出来的,不同类型的二维码测量方式不同,具体可以看他的链接 github.com/AprilRobotic... Tag Size Definition 部分,红色箭头就是你需要手动侧脸的二维码长度,单位是米,然后填写到这里;
name:和id一样,这是为了更好地区分可以任起;
tag_bundles注释:
修改 continuous_detection.launch 文件
打开 apriltag_ros/launch/continuous_detection.launch 文件。
需要修改的主要有两个标签:
这两个值是在 rostopic list中查看相机发布的话题中看见,如果你用的不是realsense,那么需要按照相机包发布出来的话题名修改,这里用的是默认设置的 realsense 相机话题。
注意:“camera_name” 一定只能用前缀,如果多加了 “/” 会导致算法订阅到的话题变成了 “/camera/color//image_raw” 这样是不会出数据的,因为后面其实是做了一个字符串拼接:
最终修改如下:
4.启动 apriltag_ros 算法
如果没有出现红色的报错说明启动成功了,如果有则检查 yaml 文件有没有出现多一个逗号或者省略号之类的。
然后再开一个窗口就可以订阅推算出来的话题:
正确检测到的应该会有下面的信息:
cartographer_ros定位功能位姿获取与重定位设置
小白在机器人定位项目中使用cartographer进行定位,面临位姿获取频率低的问题,测试显示激光频率~hz时,获取位姿频率仅为5hz。为解决此问题,尝试了以下方法:
首先,对cartographer进行源码安装。
接着,运行cartographer_rosd的demo,参考.launch运行文件和.lua配置文件,并开启pure localization功能。
尝试通过tf变换获取位姿坐标,但发现频率受限于5hz左右。为解决此问题,建立tf变换节点,发布2D位姿topic,实现高频率的位姿获取。
深入源码修改,添加::ros::Publisher _pose_pub,对 node.cc进行调整,从而获取高频率的位姿topic。
在rviz中,利用“2D Pose Estimate”功能,发布/initialpose话题,并根据机器人当前位置进行重定位设置。通过点击地图位置,发布包括x,y和theta的topic进行重定位。
总结流程,通过源码修改和rviz重定位设置,实现了高频率的位姿获取及重定位功能。若有疑问,欢迎交流,共同学习。
ROS入门笔记(七):详解ROS文件系统
ROS入门笔记(七):详细解析ROS文件系统 理解ROS工程的基础架构是关键。本章深入探讨了ROS的工程结构,特别是catkin编译系统、工作空间的创建与组织、package的构建以及常见文件的作用。这些内容有助于我们正确地建立和管理ROS项目。Catkin编译系统
ROS项目采用Catkin编译系统,它是基于CMake的高效工具,用于大型项目的编译与管理。早期的rosbuild已不适用,Catkin在Groovy版本中引入,提供了简化编译、更好的可移植性和跨平台支持,如今大部分核心软件包已切换至Catkin。工作空间结构
Catkin工作空间就像一个仓库,包含src、build和devel三个核心路径。src存放源代码,build用于编译,而devel则管理环境变量。创建和编译工作空间是ROS开发的基础步骤。Package的组织
Package是工作空间的基本单元,包含CMakeLists.txt和package.xml等文件。CMakeLists.txt定义编译规则,而package.xml则是包的详细描述,如依赖和许可信息。其他常见文件
launch文件:打包并启动程序,指定参数和控制指令。
msg/srv/action文件:自定义数据结构,用于消息、服务和动作的交互。
urdf/xacro:描述机器人模型的物理结构。
yaml文件:存储参数配置。
3D模型文件:dae/stl,用于3D模型展示。
rviz文件:配置RViz视窗的显示设置。
掌握这些基础文件和结构,是ROS开发和调试的基础。建议初学者从Catkin系统开始学习,逐步构建和管理项目。