皮皮网
皮皮网

【英雄远征源码搭建】【网赚宝源码】【淘宝上传源码】阵列加密源码_阵列加密源码是什么

来源:源码怎么变成反码 发表时间:2024-11-29 23:32:25

1.AT89C52的编程加密
2.JS加密:JSON数据加密
3.JavaScript-Obfuscator4.0.0字符串阵列化Bug及修复方法
4.32位md5?
5.EVE游戏里有个可重生的阵列阵列货柜,名字叫:加密的加密加密通讯阵列,怎么打开他啊 求高人指点
6.79C3125EAC1CE25EE2C99A9B01DFC00

阵列加密源码_阵列加密源码是源码源码什么

AT89C52的编程加密

        ATC单片机内部有8k字节的Flash PEROM,这个Flash存储阵列出厂时已处于擦除状态(即所有存储单元的内容

       å‡ä¸ºFFH),用户随时可对其进行编程。编程接口可接收高电压(+V)或低电压(Vcc)的允许编程信号。低电压编程模

       å¼é€‚合于用户在线编程系统,而高电压编程模式可与通用EPROM编程器兼容。

       ATC单片机中,有些属于低电压编程方式,而有些则是高电压编程方式,用户可从芯片上的型号和读取芯片内的

       ç­¾åå­—节获得该信息。

       ATC 的程序存储器阵列是采用字节写入方式编程的,每次写入一个字节,要对整个芯片内的PEROM 程序存储器

       å†™å…¥ä¸€ä¸ªéžç©ºå­—节,必须使用片擦除的方式将整个存储器的内容清除。 编程前,须按表9 和图 所示设置好地址、数据及控制信号, ATC 编程方法如下:

       1. 在地址线上加上要编程单元的地址信号。

       2. 在数据线上加上要写入的数据字节。

       3. 激活相应的控制信号。

       4. 在高电压编程方式时,将EA/Vpp 端加上+V 编程电压。

       5. 每对Flash 存储阵列写入一个字节或每写入一个程序加密位,加上一个ALE/PROG编程脉冲。每个字节写入周期

       æ˜¯è‡ªèº«å®šæ—¶çš„,通常约为1.5ms。重复1—5 步骤,改变编程单元的地址和写入的数据,直到全部文件编程结束。 ATC 有3 个程序加密位,可对芯片上的3 个加密位LB1、LB2、LB3 进行编程(P)或不编程(U)来得到。

       å½“加密位LB1 被编程时,在复位期间,EA 端的逻辑电平被采样并锁存,如果单片机上电后一直没有复位,则锁存起的

       åˆå§‹å€¼æ˜¯ä¸€ä¸ªéšæœºæ•°ï¼Œä¸”这个随机数会一直保存到真正复位为止。为使单片机能正常工作,被锁存的EA 电平值必须与该引

       è„šå½“前的逻辑电平一致。此外,加密位只能通过整片擦除的方法清除。 ATC单片机用Data Palling 表示一个写周期结束为特征,在一个写周期中,如需读取最后写入的一个字节,则读出的数据的最高位(P0.7)是原来写入字节最高位的反码。写周期完成后,所输出的数据是有效的数据,即可进入下一个字节的写周期,写周期开始后,Data Palling 可能随时有效。

       Ready/Busy:字节编程的进度可通过“RDY/BSY 输出信号监测,编程期间,ALE 变为高电平“H”后,P3.4(RDY/BSY)端电平被拉低,表示正在编程状态(忙状态)。编程完成后,P3.4 变为高电平表示准备就绪状态。

       ç¨‹åºæ ¡éªŒï¼šå¦‚果加密位LB1、LB2 没有进行编程,则代码数据可通过地址和数据线读回原编写的数据,采用如图的电路。加密位不可直接校验,加密位的校验可通过对存储器的校验和写入状态来验证。

       èŠ¯ç‰‡æ“¦é™¤ï¼šåˆ©ç”¨æŽ§åˆ¶ä¿¡å·çš„正确组合(表6)并保持ALE/PROG引脚mS 的低电平脉冲宽度即可将PEROM 阵列(4k字节)和三个加密位整片擦除,代码阵列在片擦除操作中将任何非空单元写入“1”,这步骤需再编程之前进行。

       è¯»ç‰‡å†…签名字节:ATC单片机内有3 个签名字节,地址为H、H 和H。用于声明该器件的厂商、型号和编程电压。读ATC 签名字节需将P3.6 和P3.7 置逻辑低电平,读签名字节的过程和单元H、H 及H 的正常校验相仿,只返回值意义如下:

       ï¼ˆH)=1EH 声明产品由ATMEL公司制造。

       ï¼ˆH)=H 声明为ATC 单片机。

       ï¼ˆH)=FFH 声明为V 编程电压。

       ï¼ˆH)=H 声明为5V 编程电压。

JS加密:JSON数据加密

       在JavaScript编程中,数据常以JSON格式储存。阵列阵列若对代码进行混淆加密,加密加密存储的源码源码英雄远征源码搭建JSON数据会如何变化?让我们通过实例来一探究竟。以下是阵列阵列使用JShaman专业版进行加密后的结果。首先,加密加密我们使用其“字符串unicode化”功能对一行示例代码进行加密,源码源码以展示加密前后的阵列阵列状态。加密后,加密加密JSON数据中的源码源码信息以加密形式呈现,原JSON格式仍可辨识。阵列阵列

       接着,加密加密我们采用“JS数据加密”、源码源码“字符串阵列化”与“阵列字符串加密”进行更为复杂的加密操作。加密后,不仅JSON格式消失,连数据本身也变得难以辨识。对比两种加密方式,第一种仅在数据层加密,保持了JSON的基本结构,而第二种则彻底改变了数据的显示形式,使其在视觉上几乎无法辨认。

       哪种加密方式更优,取决于实际需求。如需保持代码可读性与易解析性,第一种方式更为适宜;若追求极高的加密强度,牺牲部分可读性以实现数据的绝对安全,则第二种方式更为适用。选择合适的加密策略,既能保护数据安全,又能兼顾代码维护与开发效率。

JavaScript-Obfuscator4.0.0字符串阵列化Bug及修复方法

       Javascript-obfuscator是一款全球知名的开源JavaScript代码混淆加密工具,由俄罗斯程序员Timofey Kachalov开发维护。在年2月日发布的网赚宝源码4.0.0版本中,存在一个字符串阵列化Bug,可能在特定情况下导致混淆结果异常。本文将详细介绍该Bug情况,并提供修复方法。

       该Bug由JShaman团队发现,并已提交给作者修复。JShaman是国内专业的JavaScript源代码安全研究组织,与Javascript-obfuscator保持着友好联络与技术交流。

       Bug描述:在JavaScript-obfuscator 4.0.0版本中,字符串阵列功能对async函数中的成员对象进行阵列化处理时,可能会引发代码异常。例如,一段NodeJS代码在使用Javascript-obfuscator进行混淆加密后,如果混淆加密选项只选择了字符串阵列化这一功能,可能会导致混淆加密后的代码在运行时出现变量未定义的错误。

       混淆加密后的代码执行异常,如下图所示:第一次执行是在未加密前,代码可以正常使用,但在执行加密后的代码时,出现了错误。

       问题原因:上述JS代码混淆加密后出现错误的原因是,字符串的阵列化处理在未考虑async函数体内的环境时,导致了MemberExpression字面量放置到了函数不可访问的外部区域。如图所示,绿线上方为原始代码,与错误提示变量对比,可以清晰看出错误原因。

       修复方案:阵列化功能的实现位于JavaScript-obfuscator目录下的StringArrayTransformer.ts文件中。临时修复代码如下:在处理字面量时,增加判断逻辑,确保当处于async函数体中时,跳过阵列化处理。使用这种方法修复后,混淆加密后的代码运行正常,如下图所示。淘宝上传源码

位md5?

       MD5(,) = eebcadd5a

       MD5(,) = ebcadd

       受之以鱼,不如受之以渔。以下是两个查询md5的网站

       www.cmd5.com

       www.xmd5.com

       MD5的全称是Message-Digest Algorithm 5(信息-摘要算法),在年代初由MIT Laboratory for Computer Science和RSA Data Security Inc的Ronald L. Rivest开发出来,经MD2、MD3和MD4发展而来。它的作用是让大容量信息在用数字签名软件签署私人密匙前被"压缩"成一种保密的格式(就是把一个任意长度的字节串变换成一定长的大整数)。不管是MD2、MD4还是MD5,它们都需要获得一个随机长度的信息并产生一个位的信息摘要。虽然这些算法的结构或多或少有些相似,但MD2的设计与MD4和MD5完全不同,那是因为MD2是为8位机器做过设计优化的,而MD4和MD5却是面向位的电脑。这三个算法的描述和C语言源代码在Internet RFCs 中有详细的描述(),这是一份最权威的文档,由Ronald L. Rivest在年8月向IEFT提交。

        Rivest在年开发出MD2算法。在这个算法中,首先对信息进行数据补位,使信息的字节长度是的倍数。然后,以一个位的检验和追加到信息末尾。并且根据这个新产生的信息计算出散列值。后来,Rogier和Chauvaud发现如果忽略了检验和将产生MD2冲突。MD2算法的加密后结果是唯一的--既没有重复。

        为了加强算法的安全性,Rivest在年又开发出MD4算法。MD4算法同样需要填补信息以确保信息的字节长度加上后能被整除(信息字节长度mod = )。然后,一个以位二进制表示的信息的最初长度被添加进来。信息被处理成位Damg?rd/Merkle迭代结构的区块,而且每个区块要通过三个不同步骤的处理。Den Boer和Bosselaers以及其他人很快的发现了攻击MD4版本中第一步和第三步的漏洞。Dobbertin向大家演示了如何利用一部普通的源码编辑软件个人电脑在几分钟内找到MD4完整版本中的冲突(这个冲突实际上是一种漏洞,它将导致对不同的内容进行加密却可能得到相同的加密后结果)。毫无疑问,MD4就此被淘汰掉了。

        尽管MD4算法在安全上有个这么大的漏洞,但它对在其后才被开发出来的好几种信息安全加密算法的出现却有着不可忽视的引导作用。除了MD5以外,其中比较有名的还有SHA-1、RIPE-MD以及HAVAL等。

        一年以后,即年,Rivest开发出技术上更为趋近成熟的MD5算法。它在MD4的基础上增加了"安全-带子"(Safety-Belts)的概念。虽然MD5比MD4稍微慢一些,但却更为安全。这个算法很明显的由四个和MD4设计有少许不同的步骤组成。在MD5算法中,信息-摘要的大小和填充的必要条件与MD4完全相同。Den Boer和Bosselaers曾发现MD5算法中的假冲突(Pseudo-Collisions),但除此之外就没有其他被发现的加密后结果了。

        Van Oorschot和Wiener曾经考虑过一个在散列中暴力搜寻冲突的函数(Brute-Force Hash Function),而且他们猜测一个被设计专门用来搜索MD5冲突的机器(这台机器在年的制造成本大约是一百万美元)可以平均每天就找到一个冲突。但单从年到年这年间,竟没有出现替代MD5算法的MD6或被叫做其他什么名字的新算法这一点,我们就可以看出这个瑕疵并没有太多的影响MD5的安全性。上面所有这些都不足以成为MD5的在实际应用中的问题。并且,由于MD5算法的使用不需要支付任何版权费用的,所以在一般的情况下(非绝密应用领域。但即便是应用在绝密领域内,MD5也不失为一种非常优秀的中间技术),MD5怎么都应该算得上是非常安全的了。

        算法的应用

        MD5的典型应用是对一段信息(Message)产生信息摘要(Message-Digest),以防止被篡改。比如,在UNIX下有很多软件在下载的vb病毒源码时候都有一个文件名相同,文件扩展名为.md5的文件,在这个文件中通常只有一行文本,大致结构如:

        MD5 (tanajiya.tar.gz) = 0cab9c0fade

        这就是tanajiya.tar.gz文件的数字签名。MD5将整个文件当作一个大文本信息,通过其不可逆的字符串变换算法,产生了这个唯一的MD5信息摘要。如果在以后传播这个文件的过程中,无论文件的内容发生了任何形式的改变(包括人为修改或者下载过程中线路不稳定引起的传输错误等),只要你对这个文件重新计算MD5时就会发现信息摘要不相同,由此可以确定你得到的只是一个不正确的文件。如果再有一个第三方的认证机构,用MD5还可以防止文件作者的"抵赖",这就是所谓的数字签名应用。

        MD5还广泛用于加密和解密技术上。比如在UNIX系统中用户的密码就是以MD5(或其它类似的算法)经加密后存储在文件系统中。当用户登录的时候,系统把用户输入的密码计算成MD5值,然后再去和保存在文件系统中的MD5值进行比较,进而确定输入的密码是否正确。通过这样的步骤,系统在并不知道用户密码的明码的情况下就可以确定用户登录系统的合法性。这不但可以避免用户的密码被具有系统管理员权限的用户知道,而且还在一定程度上增加了密码被破解的难度。

        正是因为这个原因,现在被黑客使用最多的一种破译密码的方法就是一种被称为"跑字典"的方法。有两种方法得到字典,一种是日常搜集的用做密码的字符串表,另一种是用排列组合方法生成的,先用MD5程序计算出这些字典项的MD5值,然后再用目标的MD5值在这个字典中检索。我们假设密码的最大长度为8位字节(8 Bytes),同时密码只能是字母和数字,共++=个字符,排列组合出的字典的项数则是P(,1)+P(,2)….+P(,8),那也已经是一个很天文的数字了,存储这个字典就需要TB级的磁盘阵列,而且这种方法还有一个前提,就是能获得目标账户的密码MD5值的情况下才可以。这种加密技术被广泛的应用于UNIX系统中,这也是为什么UNIX系统比一般操作系统更为坚固一个重要原因。

        算法描述

        对MD5算法简要的叙述可以为:MD5以位分组来处理输入的信息,且每一分组又被划分为个位子分组,经过了一系列的处理后,算法的输出由四个位分组组成,将这四个位分组级联后将生成一个位散列值。

        在MD5算法中,首先需要对信息进行填充,使其字节长度对求余的结果等于。因此,信息的字节长度(Bits Length)将被扩展至N*+,即N*+个字节(Bytes),N为一个正整数。填充的方法如下,在信息的后面填充一个1和无数个0,直到满足上面的条件时才停止用0对信息的填充。然后,在在这个结果后面附加一个以位二进制表示的填充前信息长度。经过这两步的处理,现在的信息字节长度=N*++=(N+1)*,即长度恰好是的整数倍。这样做的原因是为满足后面处理中对信息长度的要求。

        MD5中有四个位被称作链接变量(Chaining Variable)的整数参数,他们分别为:A=0x,B=0xabcdef,C=0xfedcba,D=0x。

        当设置好这四个链接变量后,就开始进入算法的四轮循环运算。循环的次数是信息中位信息分组的数目。

        将上面四个链接变量复制到另外四个变量中:A到a,B到b,C到c,D到d。

        主循环有四轮(MD4只有三轮),每轮循环都很相似。第一轮进行次操作。每次操作对a、b、c和d中的其中三个作一次非线性函数运算,然后将所得结果加上第四个变量,文本的一个子分组和一个常数。再将所得结果向右环移一个不定的数,并加上a、b、c或d中之一。最后用该结果取代a、b、c或d中之一。

       以一下是每次操作中用到的四个非线性函数(每轮一个)。

        F(X,Y,Z) =(X&Y)|((~X)&Z)

        G(X,Y,Z) =(X&Z)|(Y&(~Z))

        H(X,Y,Z) =X^Y^Z

        I(X,Y,Z)=Y^(X|(~Z))

        (&是与,|是或,~是非,^是异或)

        这四个函数的说明:如果X、Y和Z的对应位是独立和均匀的,那么结果的每一位也应是独立和均匀的。

       F是一个逐位运算的函数。即,如果X,那么Y,否则Z。函数H是逐位奇偶操作符。

        假设Mj表示消息的第j个子分组(从0到),<<

        FF(a,b,c,d,Mj,s,ti)表示a=b+((a+(F(b,c,d)+Mj+ti)<< GG(a,b,c,d,Mj,s,ti)表示a=b+((a+(G(b,c,d)+Mj+ti)<< HH(a,b,c,d,Mj,s,ti)表示a=b+((a+(H(b,c,d)+Mj+ti)<< II(a,b,c,d,Mj,s,ti)表示a=b+((a+(I(b,c,d)+Mj+ti)<<

        这四轮(步)是:

        第一轮

        FF(a,b,c,d,M0,7,0xdaa)

        FF(d,a,b,c,M1,,0xe8c7b)

        FF(c,d,a,b,M2,,0xdb)

       FF(b,c,d,a,M3,,0xc1bdceee)

        FF(a,b,c,d,M4,7,0xfc0faf)

        FF(d,a,b,c,M5,,0xca)

        FF(c,d,a,b,M6,,0xa)

        FF(b,c,d,a,M7,,0xfd)

        FF(a,b,c,d,M8,7,0xd8)

        FF(d,a,b,c,M9,,0x8bf7af)

        FF(c,d,a,b,M,,0xffff5bb1)

        FF(b,c,d,a,M,,0xcd7be)

        FF(a,b,c,d,M,7,0x6b)

        FF(d,a,b,c,M,,0xfd)

        FF(c,d,a,b,M,,0xae)

        FF(b,c,d,a,M,,0xb)

        第二轮

        GG(a,b,c,d,M1,5,0xfe)

        GG(d,a,b,c,M6,9,0xcb)

        GG(c,d,a,b,M,,0xe5a)

        GG(b,c,d,a,M0,,0xe9b6c7aa)

        GG(a,b,c,d,M5,5,0xdfd)

        GG(d,a,b,c,M,9,0x)

        GG(c,d,a,b,M,,0xd8a1e)

        GG(b,c,d,a,M4,,0xe7d3fbc8)

        GG(a,b,c,d,M9,5,0xe1cde6)

        GG(d,a,b,c,M,9,0xcd6)

        GG(c,d,a,b,M3,,0xf4dd)

        GG(b,c,d,a,M8,,0xaed)

        GG(a,b,c,d,M,5,0xa9e3e)

        GG(d,a,b,c,M2,9,0xfcefa3f8)

        GG(c,d,a,b,M7,,0xfd9)

        GG(b,c,d,a,M,,0x8d2a4c8a)

        第三轮

        HH(a,b,c,d,M5,4,0xfffa)

        HH(d,a,b,c,M8,,0xf)

        HH(c,d,a,b,M,,0x6d9d)

        HH(b,c,d,a,M,,0xfdec)

        HH(a,b,c,d,M1,4,0xa4beea)

        HH(d,a,b,c,M4,,0x4bdecfa9)

        HH(c,d,a,b,M7,,0xf6bb4b)

        HH(b,c,d,a,M,,0xbebfbc)

        HH(a,b,c,d,M,4,0xb7ec6)

        HH(d,a,b,c,M0,,0xeaafa)

        HH(c,d,a,b,M3,,0xd4ef)

        HH(b,c,d,a,M6,,0xd)

        HH(a,b,c,d,M9,4,0xd9d4d)

        HH(d,a,b,c,M,,0xe6dbe5)

        HH(c,d,a,b,M,,0x1facf8)

        HH(b,c,d,a,M2,,0xc4ac)

        第四轮

        II(a,b,c,d,M0,6,0xf)

        II(d,a,b,c,M7,,0xaff)

        II(c,d,a,b,M,,0xaba7)

        II(b,c,d,a,M5,,0xfca)

        II(a,b,c,d,M,6,0xbc3)

        II(d,a,b,c,M3,,0x8f0ccc)

        II(c,d,a,b,M,,0xffeffd)

        II(b,c,d,a,M1,,0xdd1)

        II(a,b,c,d,M8,6,0x6fae4f)

        II(d,a,b,c,M,,0xfe2ce6e0)

        II(c,d,a,b,M6,,0xa)

        II(b,c,d,a,M,,0x4ea1)

        II(a,b,c,d,M4,6,0xfe)

        II(d,a,b,c,M,,0xbd3af)

        II(c,d,a,b,M2,,0x2ad7d2bb)

        II(b,c,d,a,M9,,0xebd)

        常数ti可以如下选择:

        在第i步中,ti是*abs(sin(i))的整数部分,i的单位是弧度。(等于2的次方)

       所有这些完成之后,将A、B、C、D分别加上a、b、c、d。然后用下一分组数据继续运行算法,最后的输出是A、B、C和D的级联。

        当你按照我上面所说的方法实现MD5算法以后,你可以用以下几个信息对你做出来的程序作一个简单的测试,看看程序有没有错误。

        MD5 ("") = dd8cdfbeecfe

        MD5 ("a") = 0ccb9c0f1b6ace

        MD5 ("abc") = cdfb0df7def

        MD5 ("message digest") = fbd7cbda2faafd0

        MD5 ("abcdefghijklmnopqrstuvwxyz") = c3fcd3dedfbccaeb

        MD5 ("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz") =

       dabdd9f5ac2c9fd9f

        MD5 ("

       ") = edf4abe3cacda2eba

        如果你用上面的信息分别对你做的MD5算法实例做测试,最后得出的结论和标准答案完全一样,那我就要在这里象你道一声祝贺了。要知道,我的程序在第一次编译成功的时候是没有得出和上面相同的结果的。

       MD5的安全性

        MD5相对MD4所作的改进:

        1. 增加了第四轮;

        2. 每一步均有唯一的加法常数;

        3. 为减弱第二轮中函数G的对称性从(X&Y)|(X&Z)|(Y&Z)变为(X&Z)|(Y&(~Z));

        4. 第一步加上了上一步的结果,这将引起更快的雪崩效应;

        5. 改变了第二轮和第三轮中访问消息子分组的次序,使其更不相似;

        6. 近似优化了每一轮中的循环左移位移量以实现更快的雪崩效应。各轮的位移量互不相同。

       祝你好运!!!

EVE游戏里有个可重生的货柜,名字叫:加密的通讯阵列,怎么打开他啊 求高人指点

       1.你说的是考古信号。雷达信号用“代码破译机”。磁力信号用“分析仪” 。

       2.如果你是在任务空间,或者死亡看到的箱子,你需要把怪全部清掉,才能打开。

        PS:如果你是在0.0扫的信号,你需要相关技能4级,不然有的箱子打不开。

CEAC1CEEE2CA9BDFC

       å¯èƒ½æ˜¯ç±»ä¼¼äºŽmd5的加密算法

       ---------------

       md5的全称是message-digest algorithm 5(信息-摘要算法),在年代初由mit laboratory for computer science和rsa data security inc的ronald l. rivest开发出来,经md2、md3和md4发展而来。它的作用是让大容量信息在用数字签名软件签署私人密匙前被"压缩"成一种保密的格式(就是把一个任意长度的字节串变换成一定长的大整数)。不管是md2、md4还是md5,它们都需要获得一个随机长度的信息并产生一个位的信息摘要。虽然这些算法的结构或多或少有些相似,但md2的设计与md4和md5完全不同,那是因为md2是为8位机器做过设计优化的,而md4和md5却是面向位的电脑。这三个算法的描述和c语言源代码在internet rfcs 中有详细的描述(h++p://www.ietf.org/rfc/rfc.txt),这是一份最权威的文档,由ronald l. rivest在年8月向ieft提交。

       rivest在年开发出md2算法。在这个算法中,首先对信息进行数据补位,使信息的字节长度是的倍数。然后,以一个位的检验和追加到信息末尾。并且根据这个新产生的信息计算出散列值。后来,rogier和chauvaud发现如果忽略了检验和将产生md2冲突。md2算法的加密后结果是唯一的--既没有重复。

       ä¸ºäº†åŠ å¼ºç®—法的安全性,rivest在年又开发出md4算法。md4算法同样需要填补信息以确保信息的字节长度加上后能被整除(信息字节长度mod = )。然后,一个以位二进制表示的信息的最初长度被添加进来。信息被处理成位damg?rd/merkle迭代结构的区块,而且每个区块要通过三个不同步骤的处理。den boer和bosselaers以及其他人很快的发现了攻击md4版本中第一步和第三步的漏洞。dobbertin向大家演示了如何利用一部普通的个人电脑在几分钟内找到md4完整版本中的冲突(这个冲突实际上是一种漏洞,它将导致对不同的内容进行加密却可能得到相同的加密后结果)。毫无疑问,md4就此被淘汰掉了。

       å°½ç®¡md4算法在安全上有个这么大的漏洞,但它对在其后才被开发出来的好几种信息安全加密算法的出现却有着不可忽视的引导作用。除了md5以外,其中比较有名的还有sha-1、ripe-md以及haval等。

       ä¸€å¹´ä»¥åŽï¼Œå³å¹´ï¼Œrivest开发出技术上更为趋近成熟的md5算法。它在md4的基础上增加了"安全-带子"(safety-belts)的概念。虽然md5比md4稍微慢一些,但却更为安全。这个算法很明显的由四个和md4设计有少许不同的步骤组成。在md5算法中,信息-摘要的大小和填充的必要条件与md4完全相同。den boer和bosselaers曾发现md5算法中的假冲突(pseudo-collisions),但除此之外就没有其他被发现的加密后结果了。

       van oorschot和wiener曾经考虑过一个在散列中暴力搜寻冲突的函数(brute-force hash function),而且他们猜测一个被设计专门用来搜索md5冲突的机器(这台机器在年的制造成本大约是一百万美元)可以平均每天就找到一个冲突。但单从年到年这年间,竟没有出现替代md5算法的md6或被叫做其他什么名字的新算法这一点,我们就可以看出这个瑕疵并没有太多的影响md5的安全性。上面所有这些都不足以成为md5的在实际应用中的问题。并且,由于md5算法的使用不需要支付任何版权费用的,所以在一般的情况下(非绝密应用领域。但即便是应用在绝密领域内,md5也不失为一种非常优秀的中间技术),md5怎么都应该算得上是非常安全的了。

       ç®—法的应用

       md5的典型应用是对一段信息(message)产生信息摘要(message-digest),以防止被篡改。比如,在unix下有很多软件在下载的时候都有一个文件名相同,文件扩展名为.md5的文件,在这个文件中通常只有一行文本,大致结构如:

       md5 (tanajiya.tar.gz) = 0cab9c0fade

       è¿™å°±æ˜¯tanajiya.tar.gz文件的数字签名。md5将整个文件当作一个大文本信息,通过其不可逆的字符串变换算法,产生了这个唯一的md5信息摘要。如果在以后传播这个文件的过程中,无论文件的内容发生了任何形式的改变(包括人为修改或者下载过程中线路不稳定引起的传输错误等),只要你对这个文件重新计算md5时就会发现信息摘要不相同,由此可以确定你得到的只是一个不正确的文件。如果再有一个第三方的认证机构,用md5还可以防止文件作者的"抵赖",这就是所谓的数字签名应用。

       md5还广泛用于加密和解密技术上。比如在unix系统中用户的密码就是以md5(或其它类似的算法)经加密后存储在文件系统中。当用户登录的时候,系统把用户输入的密码计算成md5值,然后再去和保存在文件系统中的md5值进行比较,进而确定输入的密码是否正确。通过这样的步骤,系统在并不知道用户密码的明码的情况下就可以确定用户登录系统的合法性。这不但可以避免用户的密码被具有系统管理员权限的用户知道,而且还在一定程度上增加了密码被破解的难度。

       æ­£æ˜¯å› ä¸ºè¿™ä¸ªåŽŸå› ï¼ŒçŽ°åœ¨è¢«é»‘客使用最多的一种破译密码的方法就是一种被称为"跑字典"的方法。有两种方法得到字典,一种是日常搜集的用做密码的字符串表,另一种是用排列组合方法生成的,先用md5程序计算出这些字典项的md5值,然后再用目标的md5值在这个字典中检索。我们假设密码的最大长度为8位字节(8 bytes),同时密码只能是字母和数字,共++=个字符,排列组合出的字典的项数则是p(,1)+p(,2)….+p(,8),那也已经是一个很天文的数字了,存储这个字典就需要tb级的磁盘阵列,而且这种方法还有一个前提,就是能获得目标账户的密码md5值的情况下才可以。这种加密技术被广泛的应用于unix系统中,这也是为什么unix系统比一般操作系统更为坚固一个重要原因。

       ç®—法描述

       å¯¹md5算法简要的叙述可以为:md5以位分组来处理输入的信息,且每一分组又被划分为个位子分组,经过了一系列的处理后,算法的输出由四个位分组组成,将这四个位分组级联后将生成一个位散列值。

       åœ¨md5算法中,首先需要对信息进行填充,使其字节长度对求余的结果等于。因此,信息的字节长度(bits length)将被扩展至n*+,即n*+个字节(bytes),n为一个正整数。填充的方法如下,在信息的后面填充一个1和无数个0,直到满足上面的条件时才停止用0对信息的填充。然后,在在这个结果后面附加一个以位二进制表示的填充前信息长度。经过这两步的处理,现在的信息字节长度=n*++=(n+1)*,即长度恰好是的整数倍。这样做的原因是为满足后面处理中对信息长度的要求。

       md5中有四个位被称作链接变量(chaining variable)的整数参数,他们分别为:a=0x,b=0xabcdef,c=0xfedcba,d=0x。

       å½“设置好这四个链接变量后,就开始进入算法的四轮循环运算。循环的次数是信息中位信息分组的数目。

       å°†ä¸Šé¢å››ä¸ªé“¾æŽ¥å˜é‡å¤åˆ¶åˆ°å¦å¤–四个变量中:a到a,b到b,c到c,d到d。

       ä¸»å¾ªçŽ¯æœ‰å››è½®ï¼ˆmd4只有三轮),每轮循环都很相似。第一轮进行次操作。每次操作对a、b、c和d中的其中三个作一次非线性函数运算,然后将所得结果加上第四个变量,文本的一个子分组和一个常数。再将所得结果向右环移一个不定的数,并加上a、b、c或d中之一。最后用该结果取代a、b、c或d中之一。

       ä»¥ä¸€ä¸‹æ˜¯æ¯æ¬¡æ“ä½œä¸­ç”¨åˆ°çš„四个非线性函数(每轮一个)。

       f(x,y,z) =(x&y)|((~x)&z)

       g(x,y,z) =(x&z)|(y&(~z))

       h(x,y,z) =x^y^z

       i(x,y,z)=y^(x|(~z))

       ï¼ˆ&是与,|是或,~是非,^是异或)

       è¿™å››ä¸ªå‡½æ•°çš„说明:如果x、y和z的对应位是独立和均匀的,那么结果的每一位也应是独立和均匀的。

       f是一个逐位运算的函数。即,如果x,那么y,否则z。函数h是逐位奇偶操作符。

       å‡è®¾mj表示消息的第j个子分组(从0到),<<

       ff(a,b,c,d,mj,s,ti)表示a=b+((a+(f(b,c,d)+mj+ti)<< gg(a,b,c,d,mj,s,ti)表示a=b+((a+(g(b,c,d)+mj+ti)<< hh(a,b,c,d,mj,s,ti)表示a=b+((a+(h(b,c,d)+mj+ti)<< ii(a,b,c,d,mj,s,ti)表示a=b+((a+(i(b,c,d)+mj+ti)<<

       è¿™å››è½®ï¼ˆæ­¥ï¼‰æ˜¯ï¼š

       ç¬¬ä¸€è½®

       ff(a,b,c,d,m0,7,0xdaa)

       ff(d,a,b,c,m1,,0xe8c7b)

       ff(c,d,a,b,m2,,0xdb)

       ff(b,c,d,a,m3,,0xc1bdceee)

       ff(a,b,c,d,m4,7,0xfc0faf)

       ff(d,a,b,c,m5,,0xca)

       ff(c,d,a,b,m6,,0xa)

       ff(b,c,d,a,m7,,0xfd)

       ff(a,b,c,d,m8,7,0xd8)

       ff(d,a,b,c,m9,,0x8bf7af)

       ff(c,d,a,b,m,,0xffff5bb1)

       ff(b,c,d,a,m,,0xcd7be)

       ff(a,b,c,d,m,7,0x6b)

       ff(d,a,b,c,m,,0xfd)

       ff(c,d,a,b,m,,0xae)

       ff(b,c,d,a,m,,0xb)

       ç¬¬äºŒè½®

       gg(a,b,c,d,m1,5,0xfe)

       gg(d,a,b,c,m6,9,0xcb)

       gg(c,d,a,b,m,,0xe5a)

       gg(b,c,d,a,m0,,0xe9b6c7aa)

       gg(a,b,c,d,m5,5,0xdfd)

       gg(d,a,b,c,m,9,0x)

       gg(c,d,a,b,m,,0xd8a1e)

       gg(b,c,d,a,m4,,0xe7d3fbc8)

       gg(a,b,c,d,m9,5,0xe1cde6)

       gg(d,a,b,c,m,9,0xcd6)

       gg(c,d,a,b,m3,,0xf4dd)

       gg(b,c,d,a,m8,,0xaed)

       gg(a,b,c,d,m,5,0xa9e3e)

       gg(d,a,b,c,m2,9,0xfcefa3f8)

       gg(c,d,a,b,m7,,0xfd9)

       gg(b,c,d,a,m,,0x8d2a4c8a)

       ç¬¬ä¸‰è½®

       hh(a,b,c,d,m5,4,0xfffa)

       hh(d,a,b,c,m8,,0xf)

       hh(c,d,a,b,m,,0x6d9d)

       hh(b,c,d,a,m,,0xfdec)

       hh(a,b,c,d,m1,4,0xa4beea)

       hh(d,a,b,c,m4,,0x4bdecfa9)

       hh(c,d,a,b,m7,,0xf6bb4b)

       hh(b,c,d,a,m,,0xbebfbc)

       hh(a,b,c,d,m,4,0xb7ec6)

       hh(d,a,b,c,m0,,0xeaafa)

       hh(c,d,a,b,m3,,0xd4ef)

       hh(b,c,d,a,m6,,0xd)

       hh(a,b,c,d,m9,4,0xd9d4d)

       hh(d,a,b,c,m,,0xe6dbe5)

       hh(c,d,a,b,m,,0x1facf8)

       hh(b,c,d,a,m2,,0xc4ac)

       ç¬¬å››è½®

       ii(a,b,c,d,m0,6,0xf)

       ii(d,a,b,c,m7,,0xaff)

       ii(c,d,a,b,m,,0xaba7)

       ii(b,c,d,a,m5,,0xfca)

       ii(a,b,c,d,m,6,0xbc3)

       ii(d,a,b,c,m3,,0x8f0ccc)

       ii(c,d,a,b,m,,0xffeffd)

       ii(b,c,d,a,m1,,0xdd1)

       ii(a,b,c,d,m8,6,0x6fae4f)

       ii(d,a,b,c,m,,0xfe2ce6e0)

       ii(c,d,a,b,m6,,0xa)

       ii(b,c,d,a,m,,0x4ea1)

       ii(a,b,c,d,m4,6,0xfe)

       ii(d,a,b,c,m,,0xbd3af)

       ii(c,d,a,b,m2,,0x2ad7d2bb)

       ii(b,c,d,a,m9,,0xebd)

       å¸¸æ•°ti可以如下选择:

       åœ¨ç¬¬i步中,ti是*abs(sin(i))的整数部分,i的单位是弧度。(等于2的次方)

       æ‰€æœ‰è¿™äº›å®Œæˆä¹‹åŽï¼Œå°†a、b、c、d分别加上a、b、c、d。然后用下一分组数据继续运行算法,最后的输出是a、b、c和d的级联。

       å½“你按照我上面所说的方法实现md5算法以后,你可以用以下几个信息对你做出来的程序作一个简单的测试,看看程序有没有错误。

       md5 ("") = dd8cdfbeecfe

       md5 ("a") = 0ccb9c0f1b6ace

       md5 ("abc") = cdfb0df7def

       md5 ("message digest") = fbd7cbda2faafd0

       md5 ("abcdefghijklmnopqrstuvwxyz") = c3fcd3dedfbccaeb

       md5 ("abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz") =

       dabdd9f5ac2c9fd9f

       md5 ("

       ") = edf4abe3cacda2eba

       å¦‚果你用上面的信息分别对你做的md5算法实例做测试,最后得出的结论和标准答案完全一样,那我就要在这里象你道一声祝贺了。要知道,我的程序在第一次编译成功的时候是没有得出和上面相同的结果的。

       md5的安全性

       md5相对md4所作的改进:

       1. 增加了第四轮;

       2. 每一步均有唯一的加法常数;

       3. 为减弱第二轮中函数g的对称性从(x&y)|(x&z)|(y&z)变为(x&z)|(y&(~z));

       4. 第一步加上了上一步的结果,这将引起更快的雪崩效应;

       5. 改变了第二轮和第三轮中访问消息子分组的次序,使其更不相似;

       6. 近似优化了每一轮中的循环左移位移量以实现更快的雪崩效应。各轮的位移量互不相同。

       [color=red]简单的说:

       MD5叫信息-摘要算法,是一种密码的算法,它可以对任何文件产生一个唯一的MD5验证码,每个文件的MD5码就如同每个人的指纹一样,都是不同的,这样,一旦这个文件在传输过程中,其内容被损坏或者被修改的话,那么这个文件的MD5码就会发生变化,通过对文件MD5的验证,可以得知获得的文件是否完整。

专业的JavaScript混淆加密:JShaman

       简介

       JShaman轻量版是JShaman.com提供的一款专业JavaScript代码混淆加密工具,以平台形式供用户使用。它具有强大的保护效果、稳定的功能、开放的WebAPI以及全自主技术等特点。

       功能

       JShaman轻量版当前拥有种混淆加密功能。完全启用所有功能后,可显著提升代码保护效果。

       具体功能说明如下:

       1. 局部变量名、函数名混淆

       通过变形局部变量名称,使其变得无意义且难以识别,保护效果显著。

       2. 全局变量名、函数名混淆

       与局部变量混淆类似,但针对全局变量进行处理,进一步提高代码安全性。

       3. 成员函数加密

       对JavaScript内置语法方法进行加密,如`console.log()`中的log函数,有效防止逆向工程。

       4. 数值常量加密

       将常数值以运算表达式形式展现,增加破解难度。

       5. 二进制表达式混淆

       将二进制表达式转换为函数调用形式,使代码难以理解。

       6. 布尔型数值加密

       对true和false进行加密,保护逻辑判断。

       7. 字符串Unicode化加密

       将字符串转换为Unicode编码,提升代码混淆度。

       8. Eval加密

       对特定语句进行Eval加密,进一步提高代码安全性。

       9. 平展控制流

       将函数内代码进行平坦化处理,打乱代码顺序,增加破解难度。

       . 收缩控制流

       将符合条件的多行代码合并为单行,采用逗号运算符语法,使代码结构复杂化。

       . 字符串阵列化

       将分散的字符串集中到数组中,保护代码结构。

       . 阵列字符串加密

       在字符串阵列化后,对数组内的字符串内容进行加密,进一步加强保护。

       . 虚拟机执行保护

       将某些代码转换为虚拟机指令,在虚拟机环境中执行,提高代码安全。

       . 代码压缩

       通过压缩代码,移除不必要的空格和换行,减小文件大小。

       . 反格式化

       与代码压缩结合使用,防止代码美化后的反编译。

       . 保留注释

       在混淆过程中保留注释,便于代码阅读和维护。

       . 保留关键字

       用户可选择保留特定的字符串、函数名、变量名,防止混淆影响关键功能。

       通过上述项功能的组合使用,JShaman轻量版能够为JavaScript代码提供全面的保护,有效防止逆向工程和版权侵犯。

相关栏目:热点

.重点关注