【2017仿小米商城源码】【c 邻接表源码】【琪神封包源码】backbone源码

来源:东莞燕窝饮品溯源码

1.源码学习之noConflict冲突处理机制
2.mmdetection源码阅读笔记:ResNet
3.MaskFormer源码解析
4.MMDet——DETR源码解读
5.DETR解读

backbone源码

源码学习之noConflict冲突处理机制

       在源码学习中,源码backbone.js的源码noConflict冲突处理机制是一个简洁但实用的概念。这个机制的源码核心是一个函数,通过执行它,源码可以控制在多版本backbone.js引用时的源码版本回退。每当执行一次noConflict(),源码2017仿小米商城源码框架就会回退到之前引入的源码版本,就像书籍的源码章节回退一样。

       举个例子,源码如果你的源码项目引入了backbone v1.4.0和v1.0.0,初始时会使用v1.0.0。源码noConflict()执行后,源码版本会切换到v1.4.0。源码再执行一次,源码由于没有其他版本,源码Backbone就会变成undefined,确保了版本控制的清晰。

       Backbone的源码设计非常注释详尽,官方文档对noConflict的描述是:它返回一个Backbone对象,指向原来的值,允许你在嵌入第三方网站时保持对原始Backbone的引用,避免版本冲突。c 邻接表源码这种处理方式源于jQuery,许多其他框架也采用了类似策略。

       在jQuery中,noConflict()行为稍有不同,它有一个deep参数。当deep为true时,会同时回退jQuery和$变量,否则仅$变量会回退。通过实例,我们可以看到这个参数如何影响版本回退。

       总的来说,noConflict冲突处理机制是一种巧妙的方式来管理多个版本的框架引用,确保在需要时能灵活地切换和控制版本。

mmdetection源码阅读笔记:ResNet

       ResNet,作为mmdetection中backbone的基石,其重要性不言而喻,它是人工智能领域引用最频繁的论文之一,微软亚洲研究院的杰作。自年提出以来,ResNet一直是目标检测领域最流行的backbone之一,其核心是琪神封包源码通过残差结构实现更深的网络,解决深度网络退化的问题。

       ResNet的基本原理是利用残差结构,通过1×1、3×3和1×1的卷积单元,如BasicBlock和BottleneckBlock,来构建不同版本的网络,如resnet-到resnet-,它们在基本单元和层数上有所区别。在mmdetection的实现中,从conv2到conv5主要由res_layer构成,其中下采样策略是关键,不同版本的网络在layer1之后的下采样位置有所不同。

       ResLayer的构造函数是理解mmdetection中ResNet的关键,它涉及内存优化技术,如torch.utils.checkpoint,通过控制函数的运行方式来节省内存,但可能增加反向传播计算时间。此外,对norm层的处理也体现了与torchvision预训练模型的兼容性。

       最后,ResNet的滚动字的源码make_stage_plugins方法允许在核心结构中插入拓展组件,这增加了模型的灵活性。总的来说,ResNet的源码阅读揭示了其设计的巧妙和灵活性,是理解深度学习模型架构的重要一步。

MaskFormer源码解析

       整个代码结构基于detectron2框架,代码逻辑清晰,从配置文件中读取相关变量,无需过多关注注册指令,核心在于作者如何实现网络结构图中的关键组件。MaskFormer模型由backbone、sem_seg_head和criterion构成,backbone负责特征提取,sem_seg_head整合其他部分,criterion用于计算损失。

       在backbone部分,作者使用了resnet和swin两种网络,关注输出特征的键值,如'res2'、'res3'等。在MaskFormerHead中,核心在于提供Decoder功能,线程池 源码 解析这个部分直接映射到模型的解码过程,通过layers()函数实现。

       pixel_decoder部分由配置文件指定,指向mask_former/heads/pixel_decoder.py文件中的TransformerEncoderPixelDecoder类,这个类负责将backbone提取的特征与Transformer结合,实现解码过程。predictor部分则是基于TransformerPredictor类,负责最终的预测输出。

       模型细节中,TransformerEncoderPixelDecoder将backbone特征与Transformer结合,生成mask_features。TransformerEncoderPixelDecoder返回的参数是FPN结果与Transformer编码结果,后者通过TransformerEncoder实现,关注维度调整以适应Transformer计算需求。predictor提供最终输出,通过Transformer结构实现类别预测与mask生成。

       损失函数计算部分采用匈牙利算法匹配查询和目标,实现类别损失和mask损失的计算,包括dice loss、focal loss等。整个模型结构和输出逻辑清晰,前向运算输出通过特定函数实现。

       总的来说,MaskFormer模型通过backbone提取特征,通过Transformer实现解码和预测,损失函数计算统一了语义分割和实例分割任务,实现了一种有效的方法。理解代码的关键在于关注核心组件的功能实现和参数配置,以及损失函数的设计思路。强烈建议阅读原论文以获取更深入的理解。

MMDet——DETR源码解读

       DETR是Object Detection领域中的创新之作,首次以完全采用Transformer结构实现端到端目标检测。DETR通过引入object query,将目标信息以query形式送入Transformer的decoder,以实现自注意力学习,捕捉不同目标的特征。query在经过Self Attention后,与图像特征进行Cross Attention,提取检测目标的特征。最终输出含有目标信息的query,通过FFN得到bbox和class信息。

       理解DETR模型前,需明确模型结构与配置。模型主要由三部分组成:Backbone,Transformer(encoder与decoder)及head。输入为batch图像,假设维度为[B, 3, W, H],使用隐层维度embed_dims为,模型变换过程如下。

       DETR配置文件中,model部分分为Backbone和bbox_head。理解其配置有助于深入模型运作机制。

       DETR的前向过程在mmdet/models/detectors/single_stage.py中统一为两个步骤,具体实现于detr_head(mmdet/models/dense_heads/detr_head.py)中的forward_single()函数。该函数负责除backbone外的所有前向过程。变量shape示例供理解,注意img_shape因随机裁剪而不同,导致shape不唯一。

       DETR的backbone采用常规的Resnet,结构相对简单,非本文讨论重点。Transformer部分的源码在mmdet/models/utils/transformer.py文件,解析如下,N = W_feat*H_feat。

       详细解读及参考文章将帮助您更深入理解DETR的内部运作与实现细节。

DETR解读

       DETR(Detection Transformer)是一种新型的目标检测模型,它基于Transformer架构,由Facebook AI Research(FAIR)提出。DETR与传统目标检测方法不同,不使用锚框或候选区域,而是直接将整个图像输入到Transformer中,同时输出目标的类别和边界框。

       DETR的主要构成部分包括backbone、transfomer以及head模块。本文将结合源码对DETR进行解析。

       Backbone部分包含PE(position embedding)和cnn(resnet)主干网络。

       PE采用二维位置编码,x和y方向各自计算了一个位置编码,每个维度的位置编码长度为num_pos_feats(该数值实际上为hidden_dim的一半),奇数位置正弦,偶数位置余弦,最后cat到一起(NHWD),permute成(NDHW)。输入的mask是2**,那么最后输出的pos encoding的shape是2***。

       CNN_backbone采用resnet,以输入3**为例,输出**,下采样5次合计倍。

       Transfomer主要由encoder和decoder两大模块构成。

       TransformerEncoder中,qkv都来自src,其中q和k加了位置编码,v没有加,猜测原因可能是qk之间会计算attention,所以位置是比较重要的,value则是和attention相乘,不需要额外的位置编码。

       TransformerDecoder中,几个重点的变量包括object query的自注意力和cross attention。

       Head部分,分类分支是Linear层,回归分支是多层感知机。

       Matcher采用的是HungarianMatcher匹配,这里计算的cost不参与反向传播。

       Criterion根据匈牙利算法返回的indices tuple,包含了src和target的index,计算损失:分类loss+box loss。

       分类损失采用交叉熵损失函数,回归损失采用L1 loss + Giou loss。

       推理部分,先看detr forward函数,后处理,预测只需要卡个阈值即可。

       论文链接:arxiv.org/pdf/....

       代码链接:github.com/facebookrese...

       参考链接:zhuanlan.zhihu.com/p/... zhuanlan.zhihu.com/p/...

       如需删除侵权内容,请联系我。

文章所属分类:休闲频道,点击进入>>