欢迎来到皮皮网网首页

【透视dll源码】【夜袭者PVP源码】【星球重启全部源码】pypy 源码安装

来源:php源码加壳 时间:2024-11-24 13:31:13

1.第28篇:深入理解RPython-RTyper/Backend组件
2.Python的优缺点?源码
3.一篇文章告诉你python爬虫原理,知其然更知其所以然,安装从此爬虫无忧
4.cpython是源码什么?pypy是什么?python和这两个东西有什么关系
5.python是什么?
6.第23篇 深入理解RPython(入门篇)

pypy 源码安装

第28篇:深入理解RPython-RTyper/Backend组件

       RTyper组件在RPython的复杂Python编译中,主要作用是安装作为Annotator的类型注释转换为目标底层语言能够识别的类型信息的中介。在实际使用中,源码RTyper组件几乎不需要导入额外的安装透视dll源码RPython模块。表1整理了RTyper组件与C代码之间的源码映射关系,为日后查阅相关C代码提供了便利。安装

       以下是源码一个简单的示例代码,封装在一个名为triangle.py的安装脚本文件中。执行指令后,源码RPython生成的安装C代码被放置在临时目录中,如下图所示。源码在临时目录中,安装存在大量的源码命名为platcheck_的C源码文件,这些文件根据当前系统环境(包括C编译器特性、常量等)进行了定制化生成。

       例如,查看一个名为platcheck_.c的文件,其中测试了当前系统环境下的浮点数相关库和C头文件,通过手动编译这些测试代码,可以查看一些常量的值。这表明RPython编译PyPy源代码和自定义Python代码时,会使用C编译器从环境中提取系统平台信息。

       在临时目录下的testing_1子目录中,主要源代码实现集中在该目录内,如下图所示。由RPython内置Python代码实现被翻译为C源码实现,其他文件可以通过观察C源码文件的命名风格来对应找到对应的Python源码实现。

       在testing_1目录下,GC、RPython相关函数库的C代码和示例代码实现共计行。其中,Python代码相关的C版本实现被放入一个名为implement.c的文件中,包含对应Python函数名称的C版本实现。例如,对应main函数的C代码实现和calc_triangle_area函数的C代码实现。

       值得注意的是,RPython生成的C代码中的代码风格可能与常规C程序猿编写的代码有所不同,大量使用goto语句,这对于C程序猿来说可能是一个挑战,但对C编译器来说可能是最优的代码设计方案。这些goto语句将代码分割成小代码片段,在一个C函数内部进行内联优化,减少不必要的程序栈帧开销。

       阅读RPython生成的C代码时,可以遵循以下步骤:首先,参照Python源代码,找出变量x、y、z对应的C版本变量,并找到对应调用的C版本函数。例如,夜袭者PVP源码在pypy_g_main函数的第行,可以找到对应pypy_g_calc_triangle_area的调用。通过关键字查找,可以找到变量l_v、l_v、l_z_0的出处,进而找到RPyField宏定义的第一个传入参数的数据类型。

       RPyField是一个宏定义,需要在PyPy源码的rpython/translator/src目录中的头文件中查找出处。通过加载rpython/translator/src目录下的相关头文件,可以找到如RPyField宏定义的实现。例如,RPyField宏定义中的第一个参数是一个指向某个数据结构成员的指针。

       在阅读过程中,需要关注Python中的赋值操作如何在C代码中体现,以及如何通过反推找到相关操作的宏定义或函数。例如,查找从反推找到变量l_v关联的操作OP_ADR_ADD函数。在实际操作中,C语句通常简单地在CPU寄存器之间传值,不会产生额外的函数栈开销。

       总结而言,理解RPython生成的C代码需要一定的技巧和方法。通过遵循上述步骤,可以更好地阅读和理解复杂代码。下篇文章将深入分析示例代码中的pypy_g_calc_triangle_area函数,并与Cython编译后的示例代码进行比较,提供更详细的分析。

Python的优缺点?

       ä¼˜ç‚¹

       Python就为我们提供了非常完善的基础代码库,覆盖了网络、文件、GUI、数据库、文本等大量内容,被形象地称作“内置电池(batteries included)”。用Python开发,许多功能不必从零编写,直接使用现成的即可。

       é™¤äº†å†…置的库外,Python还有大量的第三方库,也就是别人开发的,供你直接使用的东西。当然,如果你开发的代码通过很好的封装,也可以作为第三方库给别人使用。

       ç¼ºç‚¹:

       ç¬¬ä¸€ä¸ªç¼ºç‚¹å°±æ˜¯è¿è¡Œé€Ÿåº¦æ…¢ï¼Œå’ŒC程序相比非常慢,因为Python是解释型语言,你的代码在执行时会一行一行地翻译成CPU能理解的机器码,这个翻译过程非常耗时,所以很慢。而C程序是运行前直接编译成CPU能执行的机器码,所以非常快。

       è¿™ä¸ªç¼ºç‚¹ä»…限于你要编写的软件需要卖给别人的时候。好消息是目前的互联网时代,靠卖软件授权的商业模式越来越少了,靠网站和移动应用卖服务的模式越来越多了,后一种模式不需要把源码给别人。

       å†è¯´äº†ï¼ŒçŽ°åœ¨å¦‚火如荼的开源运动和互联网自由开放的精神是一致的,互联网上有无数非常优秀的像Linux一样的开源代码,我们千万不要高估自己写的代码真的有非常大的“商业价值”。那些大公司的代码不愿意开放的更重要的原因是代码写得太烂了,一旦开源,就没人敢用他们的产品了。

一篇文章告诉你python爬虫原理,知其然更知其所以然,从此爬虫无忧

       Python,一种面向对象、直译式电脑编程语言,功能强大且通用性强,已有近二十年的发展历史,其标准库完善且易懂,能轻松完成多种任务。Python支持多种编程范式,如命令式、面向对象、函数式、面向切面、泛型编程,并具有垃圾回收功能,自动管理存储器使用。它常用于处理系统管理和网络编程,也可执行复杂任务。Python虚拟机几乎能在所有作业系统中运行,通过工具如py2exe、PyPy、PyInstaller可将Python源代码转换为可独立运行的程序。

       爬虫教程通常会从页面提取数据、星球重启全部源码介绍HTTP协议、讲解模拟登录和反爬虫策略,最后提供简单Scrapy教程。这些教程往往忽略了爬虫的核心逻辑抽象,即如何遍历网页。实际上,只需要使用两个队列和一个集合,即可实现基础通用爬虫。

       互联网由页面构成,页面间由链接连接,形成有向图结构。可以使用广度优先或深度优先算法遍历此图。虽然图巨大,但我们仅关注感兴趣的节点,如某个域名下的网页。广度优先和深度优先可用递归或队列实现。但使用Python写爬虫时,不能使用递归,因为调用栈深度限制,可能导致异常。因此,推荐使用队列实现网页遍历。

       理论知识后,以爬取煎蛋网的妹子图为例,说明如何获取上下页链接。需避免重复访问已访问页面,使用集合存储已访问页面。从页面中抽取所需数据,如,可以使用xpath表达式。将运行请求和运行项目放入不同线程,实现同时遍历网页和下载。

       最终实现煎蛋妹子图爬虫,所有爬虫框架本质上相似,Scrapy采用类似方式,但使用Lifo Queue实现深度优先遍历。通过配置文件,可实现爬取目标数据,简化代码修改。遇到封锁时,可采用灵活策略应对,如使用pipeline。

       Python适用于多个领域,如web开发、自动化运维、大数据分析、科学计算、机器学习和人工智能。从零基础到专业领域,Python均具有广泛应用。通过不同需求和专业背景,掌握Python可实现多种功能。精准跟踪指标源码

cpython是什么?pypy是什么?python和这两个东西有什么关系

       p >本文旨在介绍Python的主流实现CPython是如何执行源代码的。我们将以当前主分支的CPython 3.版本为例,解释从源代码到执行的全过程。

       p > Python语言内嵌有一个编译器。首先,需要对源代码进行词法分析,将字符串转化为一个个单词,以便进一步处理。这一过程主要发生在`Parser/tokenizer.c`文件中,由手工编写实现。

       p > 完成词法分析后,接下来是语法分析阶段。通过这一阶段,CPython真正理解了代码的结构。自Python 3.版本起,CPython采用了一种新的PEG解析器。

       p > PEG,全称Parser Expression Generator,理念是通过描述你设计的语法,生成相应的解析代码。在CPython项目中,`Grammar/python.gram`文件描述了Python语法,通过`Tools/peg_generator/pegen/`生成器转换为解析代码,位于`Parser/parser.c`。我有幸参与过`Grammar/python.gram`的修改,无需修改语法即可保持其稳定。

       p > PEG语法广泛应用于多种场景,因为它允许自定义描述语法,同时生成器也可以自定义。在CPython中,`Tools/peg_generator/pegen/metagrammar.gram`描述了元语法,可以用来生成不同语言的解析代码,并在多种语言中实现。

       p > 语法分析后,结果是抽象语法树(AST),声明在`Include/internal/pycore_ast.h`,并由`ast`模块对外提供接口。

       p > 有了AST,下一步是将其转换为字节码。CPython的核心是解释执行,执行的内容即为字节码。这些字节码保存在`__pycache__/*.pyc`文件中,每个小版本的字节码都可能发生变化,用户不应假设兼容性。我们可以通过`dis`模块查看编译后的结果。

       p > 字节码生成过程涉及符号查找、指令优化等多个步骤,尤其是在Python 3.的性能优化中,有一部分就是在字节码层面进行的改进。这部分主代码位于`Python/compile.c`。

       p > 字节码生成的输入是AST,输出为Python字节码。excel在线解密源码整个转换过程由`_PyParser_ASTFromFile`函数串联起来。

       p > 完成字节码生成后,下一步是执行字节码。这通常是一个大的循环过程,主要在`_PyEval_EvalFrameDefault`中实现,包含了大量的`switch case`结构。

       p > `Python/generated_cases.c.h`文件包含了几乎所有的字节码实现,并且通过`Python/bytecodes.c`生成。CPython执行的核心通常称为CPython VM(虚拟机)。

       p > 在真正执行之前,还需要内置对象的支持。基本的内置对象如`str`、`list`和`dict`在Python中至关重要。这些对象的C实现构成了CPython VM的重要部分,位于`Objects`目录下,并编译在VM程序中。

       p > Python内置了许多基本库,它们的代码通常位于`Lib`目录下。同时,CPython VM提供了丰富的C API,允许用户编写C扩展,并方便地在C扩展和Python VM之间传递对象。

       p > 为了提供基本功能,CPython必须使用一些操作系统提供的原生C函数,因此内置了许多C扩展。例如,`os`模块的C实现位于`Modules`目录下,这些模块通过CPython VM动态加载。

       p > Python最初的定位是胶水语言,大量C扩展极大地丰富了CPython的生态系统,同时也是其他Python实现如PyPy等的限制。

       p > 最后,将所有这些组件组织起来的代码位于`Python/pythonrun.c`中,经过这一系列步骤后,代码终于可以执行了。

python是什么?

       python 中文就是蟒蛇的意思。

       在计算机中,它是一种编程语言。

       Python(英语发音:/ˈpaɪθən/), 是一种面向对象、解释型计算机程序设计语言,由Guido van Rossum于年底发明,第一个公开发行版发行于年。Python语法简洁而清晰,具有丰富和强大的类库。它常被昵称为胶水语言,它能够把用其他语言制作的各种模块(尤其是C/C++)很轻松地联结在一起。常见的一种应用情形是,使用Python快速生成程序的原型(有时甚至是程序的最终界面),然后对其中有特别要求的部分,用更合适的语言改写,比如3D游戏中的图形渲染模块,性能要求特别高,就可以用C++重写。

       1发展历程编辑

       自从世纪年代初Python语言诞生至今,它逐渐被广泛应用于处理系统管理任务和Web编程。Python[1] 已经成为最受欢迎的程序设计语言之一。年1月,它被TIOBE编程语言排行榜评为年度语言。自从年以后,python的使用率是呈线性增长[2] 。

       由于Python语言的简洁、易读以及可扩展性,在国外用Python做科学计算的研究机构日益增多,一些知名大学

       已经采用Python教授程序设计课程。例如卡耐基梅隆大学的编程基础和麻省理工学院的计算机科学及编程导论就使用Python语言讲授。众多开源的科学

       计算软件包都提供了Python的调用接口,

       例如著名的计算机视觉库OpenCV、三维可视化库VTK、医学图像处理库ITK。而Python专用的科学计算扩展库就更多了,例如如下3个十分经典的

       科学计算扩展库:NumPy、SciPy和matplotlib,它们分别为Python提供了快速数组处理、数值运算以及绘图功能。因此Python语

       言及其众多的扩展库所构成的开发环境十分适合工程技术、科研人员处理实验数据、制作图表,甚至开发科学计算应用程序。

       说起科学计算,首先会被提到的可能是MATLAB。然而除了MATLAB的一些专业性很强的工具箱还无法替代之外,MATLAB的大部分常用功能都可以在Python世界中找到相应的扩展库。和MATLAB相比,用Python做科学计算有如下优点:

       ● 首先,MATLAB是一款商用软件,并且价格不菲。而Python完全免费,众多开源的科学计算库都提供了Python的调用接口。用户可以在任何计算机上免费安装Python及其绝大多数扩展库。

       ● 其次,与MATLAB相比,Python是一门更易学、更严谨的程序设计语言。它能让用户编写出更易读、易维护的代码。

       ● 最后,MATLAB主要专注于工程和科学计算。然而即使在计算领域,也经常会遇到文件管理、界面设计、网络通信等各种需求。而Python有着丰富的扩展库,可以轻易完成各种高级任务,开发者可以用Python实现完整应用程序所需的各种功能。

       2产生

       Python的创始人为Guido van Rossum。年圣诞节期间,在阿姆斯特丹,Guido为了打发圣诞节的无趣,决心开发一个新的脚本解释程序,做为ABC 语言的一种继承。之所以选中Python(大蟒蛇的意思)作为程序的名字,是因为他是一个叫Monty Python的喜剧团体的爱好者。

       ABC是由Guido参加设计的一种教学语言。就Guido本人看来,ABC

       这种语言非常优美和强大,是专门为非专业程序员设计的。但是ABC语言并没有成功,究其原因,Guido 认为是非开放造成的。Guido

       决心在Python 中避免这一错误。同时,他还想实现在ABC 中闪现过但未曾实现的东西。

       就这样,Python在Guido手中诞生了。可以说,Python是从ABC发展起来,主要受到了Modula-3(另一种相当优美且强大的语言,为小型团体所设计的)的影响。并且结合了Unix shell和C的习惯。

       3风格

       Python在设计上坚持了清晰划一的风格,这使得Python成为一门易读、易维护,并且被大量用户所欢迎的、用途广泛的语言。

       设计者开发时总的指导思想是,对于一个特定的问题,只要有一种最好的方法来解决就好了。这在由Tim

       Peters写的Python格言(称为The Zen of Python)里面表述为:There should be one-- and

       preferably only one --obvious way to do it. 这正好和Perl语言(另一种功能类似的高级动态语言)的中心思想TMTOWTDI(There's More Than One Way To Do It)完全相反。

       Python的作者有意的设计限制性很强的语法,使得不好的编程习惯(例如if语句的下一行不向右缩进)都不能通过编译。其中很重要的一项就是Python的缩进规则。

       一个和其他大多数语言(如C)的区别就是,一个模块的界限,完全是由每行的首字符在这一行的位置来决定的(而C语言

       是用一对花括号{ }来明确的定出模块的边界的,与字符的位置毫无关系)。这一点曾经引起过争议。因为自从C这类的语言诞生后,语言的语法含义与字符的排列

       方式分离开来,曾经被认为是一种程序语言的进步。不过不可否认的是,通过强制程序员们缩进(包括if,for和函数定义等所有需要使用模块的地方),Python确实使得程序更加清晰和美观。

       4设计定位

       Python

       的设计哲学是“优雅”、“明确”、“简单”。因此,Perl语言中“总是有多种方法来做同一件事”的理念在Python开发者中通常是难以忍受的。

       Python开发者的哲学是“用一种方法,最好是只有一种方法来做一件事”。在设计Python语言时,如果面临多种选择,Python开发者一般会拒绝

       花俏的语法,而选择明确的没有或者很少有歧义的语法。由于这种设计观念的差异,Python源代码通常被认为比Perl具备更好的可读性,并且能够支撑大

       规模的软件开发。这些准则被称为Python格言。在Python解释器内运行import this可以获得完整的列表。

       Python开发人员尽量避开不成熟或者不重要的优化。一些针对非重要部位的加快运行速度的补丁通常不会被合并到

       Python内。所以很多人认为Python很慢。不过,根据二八定律,大多数程序对速度要求不高。在某些对运行速度要求很高的情况,Python设计师

       倾向于使用JIT技术,或者用使用C/C++语言改写这部分程序。可用的JIT技术是PyPy。

       Python是完全面向对象的语言。函数、模块、数字、字符串都是对象。并且完全支持继承、重载、派生、多继承,有益于增强源代码的复用性。Python支持重载运算符和动态类型。相对于Lisp这种传统的函数式编程语言,Python对函数式设计只提供了有限的支持。有两个标准库(functools, itertools)提供了Haskell和Standard ML中久经考验的函数式程序设计工具。

       虽然Python可能被粗略地分类为“脚本语言”(script language),但实际上一些大规模软件开发计划例如Zope、Mnet及BitTorrent,Google也广泛地使用它。Python的支持者较喜欢称它为一种高级动态编程语言,原因是“脚本语言”泛指仅作简单程序设计任务的语言,如shellscript、VBScript等只能处理简单任务的编程语言,并不能与Python相提并论。

       Python本身被设计为可扩充的。并非所有的特性和功能都集成到语言核心。Python提供了丰富的API和

       工具,以便程序员能够轻松地使用C语言、C++、Cython来编写扩充模块。Python编译器本身也可以被集成到其它需要脚本语言的程序内。因此,很

       多人还把Python作为一种“胶水语言”(glue

       language)使用。使用Python将其他语言编写的程序进行集成和封装。在Google内部的很多项目,例如Google

       Engine使用C++编写性能要求极高的部分,然后用Python或Java/Go调用相应的模块。《Python技术手册》的作者马特利(Alex

       Martelli)说:“这很难讲,不过, 年,Python 已在 Google 内部使用,Google 召募许多 Python

       高手,但在这之前就已决定使用Python,他们的目的是 Python where we can, C++ where we

       must,在操控硬件的场合使用 C++,在快速开发时候使用 Python。”

第篇 深入理解RPython(入门篇)

       RPython 是 Python 的子集,遵循 Python 语法规范但限制了动态语言特性和类型接口,旨在强调类型安全性。它的目的是作为编译工具,将 Python 语言编译成低级平台代码。RPython 依赖于 PyPy2.7 或 CPython2.7 的基础构建,最新版的 pypy3.8 即是由 RPython 工具集合编译而成。

       深入理解 RPython 工作原理,不建议使用 Ubuntu 自带的 python 安装包或 pypy2.7 的安装包,因为 Ubuntu 已禁用 ensurepip 模块,导致很多扩展包不受支持。推荐使用 Anaconda3,最新版支持所有 Python 2.7 和 3.x 扩展包的下载。

       搭建 RPython 测试环境包括以下步骤:安装 pygame 扩展库依赖,安装与 pypy2.7 兼容的 pygame 扩展库,从 pypy 官网下载最新版源代码,解压后添加 pypy 源目录下的子目录 rpython/bin 到 PATH 环境变量。

       一个简单的 RPython 入门示例展示了如何使用 target 函数编译 Python 程序为可执行文件,生成一个名为 hello-c 的 ELF 格式的共享对象文件,可以直接运行。

       RPython 实现了类型推断,通过先入为主逻辑推定变量和函数参数的类型,确保类型安全。在类属性和字典中,类型推断也遵循首次传递数据类型的规则。此外,RPython 提供了类型装箱机制,允许在运行时处理混合数据类型。

       RPython 与其他 Python 实现的性能比较中,展示了一个查找特定整数区间内质数的算法实现。通过 RPython 编译,该程序的时间开销显著低于 CPython、Cython 和 PyPy。RPython、CPython 和 Cython 的关系可以概括为:RPython 限制动态语言特性以提升性能,Cython 兼容 CPython 特性并带来一定性能开销,而 PyPy 作为 RPython 的产物,虽然性能优于 CPython,但不及 RPython。

       综上所述,RPython 适用于需要高性能且遵循类型安全的 Python 应用场景。对于具体应用选择,应根据性能需求、代码可读性以及是否需要动态特性来决定。

用python做的软件必须开源吗?

       软件是否必须开源,取决于其许可证条款。Python语言本身遵循的是一个兼容GPL协议的许可证,而非以GPL协议发布,这意味着个人或组织在使用Python语言开发软件时不需要强制开源。

       然而,Python解释器的许可证情况可能会影响代码的开源性。例如,CPython解释器遵循的是GNU Lesser General Public License (LGPL)或GNU General Public License (GPL)中的一个版本,允许在专有软件中使用Python,而不需要公开源代码。PyPy解释器使用的是MIT许可证,允许更广泛的使用场景,包括专有软件。Jython解释器使用许可证与CPython类似。

       当讨论到软件许可证时,关键在于理解不同许可证之间的关系与差异。许可证限制范围通常局限于软件本身,而不是使用软件产生的衍生作品。例如,如果在发明了能够读取意念的笔后将其设计图纸开源,并声明遵循GPL许可证,那么该许可证仅应用于笔的设计,而不影响使用者在图纸基础上进行修改后产生的任何衍生作品。

       第三方库的许可证同样重要。例如,paramiko库遵循LGPL协议,允许在专有软件中使用而不需开源。然而,如果项目中使用了特定的第三方库,该库的许可证可能要求其用户开源代码,这将直接影响项目开源性。因此,开发者在选择使用第三方库时,必须仔细研究并理解其许可证条款。

       总之,Python软件是否必须开源取决于其许可证条款,特别是当涉及到第三方库的使用时,需要仔细研究这些库的许可证以避免违反开源要求。开发者应确保理解并遵守所有相关的许可证规定,以避免法律问题和确保项目的合规性。