1.25. Spring源码篇之SpEL表达式
2.Spring源码系列-BeanPostProcessor与BeanFactoryPostProcessor
3.Spring源码-09-Bean工厂之getBean方法
4.Spring源码- 02 Spring IoC容器启动之refresh方法
5.Spring源码 1.源码的机制下载与编译(by Gradle)
6.学习编程|Spring源码深度解析 读书笔记 第4章:bean的加载
25. Spring源码篇之SpEL表达式
Spring的SpEL表达式,即Spring Expression Language,源码是机制Spring框架中实现复杂功能的关键组件。在Spring中,源码独立的机制spring-expression模块用于支持这一功能。本文将提供对SpEL表达式源码的源码dnrd 源码分析简要分析,以帮助理解其基本用法。机制 在AbstractBeanFactory中,源码有一个名为beanExpressionResolver的机制属性,用于配置默认的源码表达式解析器。在初始化BeanFactory时,机制通过AbstractApplicationContext#prepareBeanFactory设置默认值,源码该值默认为开启状态,机制可通过配置参数spring.spel.ignore=false来关闭表达式功能。源码 核心解析组件是机制BeanExpressionResolver,它提供了evaluate方法,用于解析传入的表达式并返回结果。作为实现类,StandardBeanExpressionResolver具体实现evaluate方法,执行解析任务。 解析SpEL表达式的接口是ExpressionParser,它接收表达式和ParserContext,后者定义了解析规则。关键子类包括SpelExpressionParser、InternalSpelExpressionParser和TemplateAwareExpressionParser。在解析过程中,会调用TemplateAwareExpressionParser#parseExpressions方法,该方法进一步调用InternalSpelExpressionParser#doParseExpression,实现表达式的详细解析。解析流程的关键步骤是tokenizer.process和eatExpression方法,它们负责识别和处理特殊字符以及逻辑运算。 SpEL表达式本质上是一个语法树结构,涉及复杂的运算、对象访问和方法调用。它支持的字符规范包括括号、逻辑运算符(如or、班级评价源码and)、比较运算符(如>、<)、点号(用于访问对象属性)、问号(用于条件判断)、美元符号(用于访问变量)等。 以下是使用SpEL表达式的简单示例:案例一
输出特定值或表达式的结果。案例二
对数据集进行处理,例如筛选、排序或计算。案例三
执行对象方法,如调用实例方法或访问静态方法。案例四
使用SpEL获取Spring容器中的Bean实例,包括使用@和&注解来分别获取普通Bean和FactoryBean。 通过以上分析,我们大致了解了SpEL表达式的功能和基本用法。理解这些关键类及其功能有助于在实际开发中灵活运用SpEL,提高代码的可维护性和可读性。尽管SpEL的实现细节复杂,掌握其核心概念和用法足以应对常见的应用场景。Spring源码系列-BeanPostProcessor与BeanFactoryPostProcessor
在Spring框架中,BeanPostProcessor与BeanFactoryPostProcessor各自承担着不同的职责,它们在IoC容器的工作流程中起着关键作用。
BeanFactoryPostProcessor作用于BeanDefinition阶段,对容器中Bean的定义进行处理。这个过程发生在BeanFactory初始化时,对BeanDefinition进行修改或增强,提供了一种在不修改源代码的情况下定制Bean的机制。相比之下,BeanPostProcessor则在Bean实例化之后生效,对已经创建的Bean对象进行进一步处理或替换,提供了更晚、更灵活的扩展点。
以制造杯子为例,BeanFactoryPostProcessor相当于在选择材料和形状阶段进行定制,ssss 定位源码而BeanPostProcessor则在杯子制造完成后,进行诸如加花纹、抛光等深加工。
在Spring框架中,BeanPostProcessor的使用场景较为广泛,尤其在实现AOP(面向切面编程)时,通过使用代理类替换原始Bean,实现如日志记录、事务管理等功能。
此外,容器在启动后,还会进行消息源初始化、广播器初始化及监听器初始化,为Bean实例化做好准备。完成这些准备工作后,容器会调用registerBeanPostProcessors方法注册BeanPostProcessor,对已创建的Bean进行进一步处理。同时,初始化消息源、广播器和监听器,为后续事件处理做好基础。
总结,BeanFactoryPostProcessor与BeanPostProcessor在Spring IoC容器中的作用各有侧重。前者侧重于对BeanDefinition的定制,后者则是在Bean实例化后的进一步加工,两者共同为构建灵活、可扩展的IoC容器提供了强大的支持。
在深入分析Spring框架的源码时,我们发现refresh()方法的实现中包含了对BeanFactoryPostProcessor和BeanPostProcessor的注册与处理。这些处理步骤确保了容器能够在启动时对Bean进行正确的配置和初始化。
文章中通过一个例子展示了如何使用BeanFactoryPostProcessor替换已注册Bean的实现,以及对其源码的分析。通过例子和源码的结合,读者能够更直观地理解这些后置处理器在Spring框架中的应用和工作原理。
Spring源码--Bean工厂之getBean方法
Bean实例化与管理是网站全站源码Spring框架的核心功能之一,其中getBean方法作为获取Bean实例的主要手段,具有重要意义。接下来,我们将深入探讨getBean方法及其相关实现,以期更好地理解Spring Bean工厂的工作机制。
一、getBean方法
getBean方法是Spring容器对外提供的一种接口,用于根据指定的Bean名称获取对应Bean实例。该方法会根据配置信息和缓存机制,找到并返回所需的Bean。
二、doGetBean方法
doGetBean方法是getBean方法的内部实现,负责处理Bean的查找、创建和返回工作。其流程分为以下几个关键步骤:
1. getSingleton
若Bean是单例且已存在,则直接返回缓存的实例,无需重新创建。
2. createBean
若非单例或未找到缓存实例,将进入创建Bean的流程。此过程涉及实例化、属性填充和初始化三个主要步骤。
2.1 实例化
通过调用对应的构造函数或使用默认构造函数创建Bean实例。
2.2 三级缓存
在实例化后,新创建的Bean会首先存储于缓存中,随后被添加到Bean作用域的缓存中,以备后续使用。
2.3 属性填充
通过依赖注入或属性设置方法填充Bean的属性值,确保其具有所需的功能。
2.4 初始化
执行Bean的初始化方法,实现任何特定的初始化逻辑,如配置文件加载或数据库连接等。
三、流程图
为了更直观地展示getBean方法的执行流程,以下流程图详细展示了从查找至返回Bean实例的全过程,包括缓存操作、租房 app 源码实例化、属性填充和初始化等关键步骤。
四、循环依赖示意图
在处理循环依赖时,Spring容器会采取特定策略以避免无限循环。以下示意图展示了两个单例Bean(A和B)之间循环依赖的处理过程,以及Spring如何通过延迟初始化等机制解决这一问题。
本文通过深入剖析getBean方法及其相关实现,旨在帮助开发者更好地理解Spring Bean工厂的工作机制。通过掌握这些关键概念与流程,可以更高效地利用Spring框架构建可维护且高性能的应用程序。
Spring源码- Spring IoC容器启动之refresh方法
在注册阶段,AnnotationConfigApplicationContext构造方法中的第一个方法被分析过。接下来,我们关注第二个方法:register(componentClasses)。在使用XML配置方式时,通过new ClassPathXmlApplicationContext("classpath:spring.xml")来创建实例,其中需要指定xml配置文件路径。使用注解方式时,也需要为ApplicationContext提供起始配置源头,这里使用配置类代替xml配置文件,按照配置类中的注解(如@ComponentScan、@Import、@Bean)解析并注入Bean到IoC容器。
通过配置类,Spring解析注解实现Bean的注入。使用@Configuration注解定义的配置类相当于xml配置文件,但目前Spring推荐使用注解方式,xml配置的使用概率正在降低。
register(componentClasses)方法的核心逻辑在AnnotatedBeanDefinitionReader#doRegisterBean中,将传入的配置类解析为BeanDefinition并注册到IoC容器。ConfigurationClassPostProcessor这个BeanFactory后置处理器在IoC初始化时,获取配置类的BeanDefinition集合,开始解析。
真正启动IoC容器的流程在refresh()方法中,这是了解IoC容器启动流程的关键步骤。refresh方法在AbstractApplicationContext中定义,采用模板模式,提供IoC初始化流程的基本实现,子类可以扩展。
下面分析refresh()方法的每个步骤,以了解IoC容器的启动流程。
prepareRefresh方法主要在refresh执行前进行准备工作,如设置Context的启动时间、状态,以及扩展系统属性相关。
initPropertySources()方法主要用于扩展配置来源,如网络、物理文件、数据库等加载配置信息。StandardEnvironment默认只提供加载系统变量和应用变量的功能,用于子类扩展。
❝initPropertySources方法常见扩展场景包括:❞
getEnvironment().validateRequiredProperties()确保设置的必要属性在环境中存在,否则抛出异常终止应用。
BeanFactory是Spring的基本IoC容器,ApplicationContext包装了BeanFactory,提供更智能、更便捷的功能。ConfigurableListableBeanFactory beanFactory = obtainFreshBeanFactory();获取的BeanFactory是IoC容器初始化工作的基础。
上面获取的BeanFactory还不能直接使用,需要填充必要的配置信息。至此,IoC容器的启动流程基本完成。
这里对IoC启动流程有个大致、直观的印象。主要步骤包括:准备阶段、配置来源扩展、初始化BeanFactory、填充配置、解析配置类、注册Bean、实例化BeanPostProcessor、初始化国际化和事件机制、以及创建内嵌Servlet容器(在SpringBoot中实现)。这些步骤确保了IoC容器顺利启动并管理Bean。
Spring源码 1.源码的下载与编译(by Gradle)
为了获得Spring源码并成功编译,我们首先需要下载源码。方法之一是使用Git clone命令,前提是我们已安装Git。但要注意,最新版本可能需要JDK ,若需使用JDK 8,推荐选择较旧版本。GitHub上,最新稳定版本为5.2..RELEASE,这是一个GA(General Availability)版本,表示正式发布的版本,适合在生产环境中使用。如果你使用的是JDK 8,建议选择分支版本。
如果GitHub服务不可用或下载速度缓慢,可以考虑从其他资源库下载。例如,可以使用csdn提供的资源链接支持作者,或者直接从gitee下载源码。
下载源码后,导入IDEA并选择Gradle工程。IDEA会自动加载,但可能遇到一些报错。如果报错提示“POM relocation to an other version number is not fully supported in Gradle”,需要将xml-apis的版本号更改为1.0.b2。这可以通过在项目的build.gradle文件中添加指定版本的代码来实现。
加载并配置新模块后,可以通过新建测试类来进行验证。在build.gradle中添加配置,并在模块中新建文件,包括一个启动类、一个配置类和一个实体类。记得刷新Gradle,进行测试。
测试结果应显示新建的实体类已被Spring容器加载。如果在测试中遇到问题,可以通过检查编译工具、编译器和项目结构来解决。确保使用本地Gradle路径、选择JDK 1.8版本,并在项目设置中选择正确的JDK版本。
学习编程|Spring源码深度解析 读书笔记 第4章:bean的加载
在Spring框架中,bean的加载过程是一个精细且有序的过程。首先,当需要加载bean时,Spring会尝试通过转换beanName来识别目标对象,可能涉及到别名或FactoryBean的识别。
加载过程分为几步:从缓存查找单例,Spring容器内单例只创建一次,若缓存中无数据,会尝试从singletonFactories寻找。接着是bean的实例化,从缓存获取原始状态后,可能需要进一步处理以符合预期状态。
原型模式的依赖检查是单例模式特有的,用来避免循环依赖问题。然后,如果缓存中无数据,会检查parentBeanFactory,递归加载配置。BeanDefinition会被转换为RootBeanDefinition,合并父类属性,确保依赖的正确初始化。
Spring根据不同的scope策略创建bean,如singleton、prototype等。类型转换是后续步骤,可能将返回的bean转换为所需的类型。FactoryBean的使用提供了灵活的实例化逻辑,用户自定义创建bean的过程。
当bean为FactoryBean时,getBean()方法代理了FactoryBean的getObject(),允许通过不同的方式配置bean。缓存中获取单例时,会执行循环依赖检测和性能优化。最后,通过ObjectFactory实例singletonFactory定义bean的完整加载逻辑,包括回调方法用于处理单例创建前后的状态。
SpringBoot源码学习——SpringBoot自动装配源码解析+Spring如何处理配置类的
SpringBoot通过SPI机制,借助外部引用jar包中的META-INF/spring.factories文件,实现引入starter即可激活功能,简化手动配置bean,实现即开即用。
启动SpringBoot服务,通常使用Main方法启动,其中@SpringBootApplication注解包含@SpringBootConfiguration、@EnableAutoConfiguration、@ComponentScan,自动装配的核心。
深入分析@SpringBootApplication,其实质是执行了@SpringBootConfiguration、@EnableAutoConfiguration、@ComponentScan三个注解的功能,简化了配置过程,强调了约定大于配置的思想。
SpringBoot的自动装配原理着重于研究如何初始化ApplicationContext,Spring依赖于ApplicationContext实现其功能,SpringApplication#run方法为初始化ApplicationContext的入口。
分析SpringApplication构造方法,SpringApplication.run(启动类.class, args) 实际调用的是该方法,其关键在于根据项目类型反射生成合适的ApplicationContext。
选择AnnotationConfigServletWebServerApplicationContext,此上下文具备启动Servlet服务器和注册Servlet或过滤器类型bean的能力。
准备刷新ApplicationContext,SpringBoot将主类注册到Spring容器中,以便@ConfigurationClassPostProcessor解析主类注解,发挥@Import、@ComponentScan的作用。
刷新ApplicationContext过程包括一系列前置准备,如将主类信息封装成AnnotatedGenericBeanDefinition,解析注解并调用BeanDefinitionCustomizer自定义处理。
解析配置类中的注解,通过BeanDefinitionRegistryPostProcessor和ConfigurationClassParser实现,筛选、排序候选者,并解析@Import注解实现自动装配。
增强配置类,ConfigurationClassPostProcessor对full模式的配置进行增强,确保@Import正确处理,CGLIB用于增强原配置类,确保生命周期完整,避免真正执行@Bean方法逻辑。
深入解析AutoConfigurationImportSelector实现自动装配,通过spring.boot.enableautoconfiguration设置开启状态,读取spring-autoconfigure-metadata.properties和META-INF/spring.factories文件,筛选并加载自动配置类。