1.零基础读懂视频播放器控制原理: ffplay 播放器源代码分析
2.FFmpeg源码分析: AVStream码流
3.FFmpeg源码分析:视频滤镜介绍(上)
4.SRS4.0源代码分析之WebRTC服务总体介绍
5.音频数据的音频源码音频源码建模全流程代码示例:通过讲话人的声音进行年龄预测
6.深入剖析-ijkplayer框架音视频开发
零基础读懂视频播放器控制原理: ffplay 播放器源代码分析
视频播放器的核心原理在于控制音视频帧序列,其中ffplay作为FFmpeg自带的分析分析播放器,利用ffmpeg解码库和sdl库进行视频渲染。音频源码音频源码本文将通过分析ffplay源代码,分析分析深入解析音视频同步、音频源码音频源码播放控制的分析分析创业众筹互助源码原理。
FFmpeg的音频源码音频源码跨平台特性使得在PC端分析代码更为高效,本文则主要聚焦于ffplay for MFC的分析分析移植代码。首先,音频源码音频源码理解视频文件结构,分析分析每个MP4文件包含封装格式、音频源码音频源码比特率等信息,分析分析音视频被区分为独立的音频源码音频源码stream,并有各自的分析分析参数。解复用后,音频源码音频源码音频和视频帧转化为原始数据,进入播放流程,如图2所示。
简化播放器,仅考虑视频解码和SDL显示,其流程图显示了FFmpeg初始化、读取并解码帧、然后渲染到窗口的过程。为了实现音视频同步,播放器需要处理帧率、音频采样率和视频帧显示时间的关系,以及不同流的帧数差异。
文章接下来提出五个关键问题,涉及画面、字幕和声音的组合,音视频同步的具体机制,以及快进/后退操作的实现。ffplay通过定义VideoState结构体,将播放控制分发到不同线程,利用PTS时间戳确保音视频同步。视频播放器操作的实现包括控制暂停和播放,以及通过时间而非帧数进行快进/后退,以保持同步。
分析ffplay代码时,整体结构包括定时器刷新、多线程解码和显示,以及关键控制函数的中国互联网信用评价源码使用。在深入理解PTS和DTS后,我们看到ffplay如何动态调整PTS以实现音视频同步。最后,文章总结了通过ffplay源码学习到的基础概念和实用技巧,强调了从基础开始理解、代码架构分析和平台选择的重要性。
FFmpeg源码分析: AVStream码流
在AVCodecContext结构体中,AVStream数组存储着所有视频、音频和字幕流的信息。每个码流包含时间基、时长、索引数组、编解码器参数、dts和元数据。索引数组用于保存帧数据包的offset、size、timestamp和flag,方便进行seek定位。
让我们通过ffprobe查看mp4文件的码流信息。该文件包含5个码流,是双音轨双字幕文件。第一个是video,编码为h,帧率为.fps,分辨率为x,像素格式为yuvp。第二个和第三个都是audio,编码为aac,采样率为,立体声,语言分别为印地语和英语。第四个和第五个都是subtitle,语言为英语,编码器为mov_text和mov_text。
调试实时数据显示,stream数组包含以下信息:codec_type(媒体类型)、codec_id、bit_rate、profile、level、width、凹底淘金主图指标源码height、sample_rate、channels等编解码器参数。
我们关注AVCodecContext的编解码器参数,例如codec_type、codec_id、bit_rate、profile、level、width、height、sample_rate和channels。具体参数如下:codec_type - 视频/音频/字幕;codec_id - 编码器ID;bit_rate - 位率;profile - 编码器配置文件;level - 编码器级别;width - 宽度;height - 高度;sample_rate - 采样率;channels - 音道数。
AVStream内部的nb_index_entries(索引数组长度)和index_entries(索引数组)记录着offset、size、timestamp、flags和min_distance信息。在seek操作中,通过二分查找timestamp数组来定位指定时间戳对应的帧。seek模式有previous、next、nearest,通常使用previous模式向前查找。
时间基time_base在ffmpeg中用于计算时间戳。在rational.h中,AVRational结构体定义为一个有理数,用于时间计算。要将时间戳转换为真实时间,只需将num分子除以den分母。
FFmpeg源码分析:视频滤镜介绍(上)
FFmpeg在libavfilter模块提供了丰富的音视频滤镜功能。本文主要介绍FFmpeg的视频滤镜,包括黑色检测、视频叠加、色彩均衡、去除水印、抗抖动、矩形标注、九宫格等。
黑色检测滤镜用于检测视频中的纯黑色间隔时间,输出日志和元数据。若检测到至少具有指定最小持续时间的自媒体多平台同步系统源码黑色片段,则输出开始、结束时间戳与持续时间。该滤镜通过参数选项rs、gs、bs、rm、gm、bm、rh、gh、bh来调整红、绿、蓝阴影、基调与高亮区域的色彩平衡。
视频叠加滤镜将两个视频的所有帧混合在一起,称为视频叠加。顶层视频覆盖底层视频,输出时长为最长的视频。实现代码位于libavfilter/vf_blend.c,通过遍历像素矩阵计算顶层像素与底层像素的混合值。
色彩均衡滤镜调整视频帧的RGB分量占比,通过参数rs、gs、bs、rm、gm、bm、rh、gh、bh在阴影、基调与高亮区域进行色彩平衡调整。
去除水印滤镜通过简单插值抑制水印,仅需设置覆盖水印的矩形。代码位于libavfilter/vf_delogo.c,核心是基于矩形外像素值计算插值像素值。
矩形标注滤镜在视频画面中绘制矩形框,用于标注ROI兴趣区域。在人脸检测与人脸识别场景中,检测到人脸时会用矩形框进行标注。
绘制x宫格滤镜用于绘制四宫格、九宫格,通达信擒牛公式源码模拟画面拼接或分割。此滤镜通过参数x、y、width、height、color、thickness来定义宫格的位置、大小、颜色与边框厚度。
调整yuv或rgb滤镜通过计算查找表,绑定像素输入值到输出值,然后应用到输入视频,实现色彩、对比度等调整。相关代码位于vf_lut.c,支持四种类型:packed 8bits、packed bits、planar 8bits、planar bits。
将彩色视频转换为黑白视频的滤镜设置U和V分量为,实现效果如黑白视频所示。
SRS4.0源代码分析之WebRTC服务总体介绍
SRS4.0的WebRTC服务提供了一种强大的实时音视频通信解决方案,它基于Web标准,支持浏览器之间的双向通信。SRS4.0引入WebRTC的主要目的是为了增强服务器的SFU(服务器转发单元)功能,以优化客户端接入和降低音视频处理对服务器CPU的负担。通过部署SFU,客户端可以将本地音视频数据推送到服务器,同时服务器根据需要拉取数据,实现低延迟的直播连麦场景。
WebRTC涉及的知识点广泛,包括SDP报文处理、ICE连接建立、DTLS加密等,但SRS4.0的重点在于简化用户对WebRTC的理解。SRS4.0 WebRTC服务的核心模块在`srs_app_rtc_server.cpp`中初始化,主要负责自签名证书生成、UDP端口监听(如)和推拉流API接口注册。RTMP与WebRTC的不同在于,WebRTC通过P2P/ICE技术建立UDP连接,而RTMP则通过socket复用控制命令和数据流。
SRS4.0通过HTTP(S)接口提供对外API,如/rtc/v1/publish/和/rtc/v1/play/,用于接收和发送音视频数据。当客户端发起推流或拉流请求时,SRS会创建相应的对象(如SrsRtcPublishStream和SrsRtcPlayStream),并处理SDP交换和ICE连接建立。推流和拉流过程涉及SDP报文协商,ICE用于客户端和服务端建立数据传输通道,确保安全性和稳定性。
最后,总结SRS4.0 WebRTC的处理流程:首先,监听端口并提供API接口;其次,根据API请求创建相应的数据流对象;接着,通过SDP和ICE建立连接;最后,音视频数据在服务器和客户端之间按此流程传递:客户端→服务器→SRS对象→客户端。理解这些核心流程有助于深入研究SRS4.0的WebRTC功能和实现机制。
音频数据的建模全流程代码示例:通过讲话人的声音进行年龄预测
音频数据建模全流程详解:通过声纹预测年龄 本文将引导你从音频数据的初始处理到特征提取、探索性分析和模型构建的全过程。首先,音频数据与图像和文本类似,需要转化为机器可理解的格式。音频数据呈现形式多样:波形表示信号在时间上的变化,而快速傅立叶变换和频谱图则揭示频率信息。梅尔频率倒谱系数(MFCC)是常用的表示方式,更接近人类感知。
数据清洗阶段,通过可视化示例,理解背景噪声的差异,可利用noisereduce包降噪,trim()函数用于修剪音频。
特征提取是关键,包括检测开始点、录音长度、节奏和基频(音高)等,用于分析说话者的特征。
通过对Common Voice数据集进行EDA,包括性别和年龄分布分析、特征值分布和相关性,发现性别对f0特征有显著影响,年龄与大多数特征关联度低。
模型选择阶段,本文采用经典机器学习方法,如LogisticRegression,结合GridSearchCV进行参数调整,评估模型性能。
通过以上步骤,你将深入了解如何将音频数据转化为可预测的模型,以进行年龄预测等任务。源代码可在github.com/miykael/miyk...获取。深入剖析-ijkplayer框架音视频开发
随着互联网技术的迅猛发展,移动设备上的视频播放需求日益增长,催生了一系列开源和闭源播放器。这些播放器的功能虽然强大,兼容性也颇优,但其基本模块通常包括事务处理、数据接收和解复用、音视频解码以及渲染。以下是一个简化的基本框架图。
在众多播放器项目中,我们选择了ijkplayer进行源码分析。ijkplayer是一款基于FFPlay的轻量级Android/iOS视频播放器,支持跨平台,API易于集成,编译配置可裁剪,方便控制安装包大小。本文基于ijkplayer的k0.7.6版本,重点分析其C语言实现的核心代码,以iOS平台为例,Android平台实现类似,具体请读者自行研究。
ijkplayer的主要目录结构如下:tool(初始化项目工程脚本)、config(编译ffmpeg使用的配置文件)、extra(存放编译ijkplayer所需的依赖源文件,如ffmpeg、openssl等)、ijkmedia(核心代码)、ijkplayer(播放器数据下载及解码相关)、ijksdl(音视频数据渲染相关)、ios(iOS平台上的上层接口封装以及平台相关方法)、android(android平台上的上层接口封装以及平台相关方法)。iOS和Android平台在功能实现上的主要差异在于视频硬件解码和音视频渲染。
ijkplayer的初始化流程包括创建播放器对象,打开ijkplayer/ios/IJKMediaDemo/IJKMediaDemo.xcodeproj工程,在IJKMoviePlayerViewController类中viewDidLoad方法中创建了IJKFFMoviePlayerController对象,即iOS平台上的播放器对象。
ijkplayer的初始化方法具体实现如下:创建了IjkMediaPlayer结构体实例_mediaPlayer,主要完成了以下三个动作:创建平台相关的IJKFF_Pipeline对象,包括视频解码以及音频输出部分;至此,ijkplayer播放器初始化的相关流程已经完成。
ijkplayer实际上是基于ffplay.c实现的,本章节将以该文件为主线,从数据接收、音视频解码、音视频渲染及同步这三大方面进行讲解,要求读者具备基本的ffmpeg知识。
当外部调用prepareToPlay启动播放后,ijkplayer内部最终会调用到ffplay.c中的stream_open方法,该方法是启动播放器的入口函数,在此会设置player选项,打开audio output,最重要的是调用stream_open方法。
从代码中可以看出,stream_open主要做了以下几件事情:创建上下文结构体,设置中断函数,打开文件,探测媒体类型,打开视频、音频解码器,读取媒体数据,将音视频数据分别送入相应的queue中,重复读取和送入数据步骤。
ijkplayer在视频解码上支持软解和硬解两种方式,可在播放前配置优先使用的解码方式,播放过程中不可切换。iOS平台上硬解使用VideoToolbox,Android平台上使用MediaCodec。ijkplayer中的音频解码只支持软解,暂不支持硬解。
ijkplayer中Android平台使用OpenSL ES或AudioTrack输出音频,iOS平台使用AudioQueue输出音频。audio output节点在ffp_prepare_async_l方法中被创建。
iOS平台上采用OpenGL渲染解码后的YUV图像,渲染线程为video_refresh_thread,最后渲染图像的方法为video_image_display2。
对于播放器来说,音视频同步是一个关键点,同时也是一个难点。通常音视频同步的解决方案就是选择一个参考时钟,播放时读取音视频帧上的时间戳,同时参考当前时钟参考时钟上的时间来安排播放。
ijkplayer支持的事件比较多,具体定义在ijkplayer/ijkmedia/ijkplayer/ff_ffmsg.h中。在播放器底层上报事件时,实际上就是将待发送的消息放入消息队列,另外有一个线程会不断从队列中取出消息,上报给外部。
本文只是粗略的分析了ijkplayer的关键代码部分,平台相关的解码、渲染以及用户事务处理部分,都没有具体分析到,大家可以参考代码自行分析。
FFplay源码分析-nobuffer
在使用 FFplay 播放 RTMP 流时,不开启 nobuffer 选项会导致画面延迟高达7秒左右,而开启此选项后,局域网延迟可降低到毫秒左右。因此,本文将深入探讨nobuffer的实现细节,以及播放端缓存7秒数据的作用。
fflags 的定义在 libavformat/options_table.h 文件中,这是一个通用选项,所有解复用器均包含此选项。在调用 avformat_open_input() 函数时,会将该命令行参数传入,其位置与所有格式参数相同,如在之前的文章《FFplay源码分析》中所述。记得在调试参数中添加-fflags nobuffer。
在 avformat_open_input() 函数内部,fflags 这个 AVOption 会被传递给 AVClass,该类存储了多个 AVOption,而fflags 的索引为5。在 av_opt_set_dict() 函数中,fflags 的值会被应用并清除其他选项。在 avformat_open_input() 执行完毕后,AVFormatContext::flags 的第7位应被置为1,即二进制的 。通过下图可以清晰地看到这个过程。
在 avformat_find_stream_info() 函数内部,如果没有设置nobuffer标记,探测的数据包将被丢入队列。avformat_find_stream_info() 首先读取一段数据包以分析输入流的编码器等信息,为了重用这些数据包,它们会被放入队列中。然而,整个探测过程长达5秒,这意味着 FFplay 大概会读取5秒的数据来分析输入流。若开启nobuffer,则不会重复使用这些探测数据,FFplay 探测完输入流后,会读取新的数据包进行播放。无需缓存,从而降低了延迟。
通过在 ffpaly.c 文件中的 avformat_find_stream_info() 函数前后输出时间,可以发现两者相差5秒,直观展示了nobuffer对于降低延迟的作用。在实时场景下,缓存功能变得多余,它原本是为了分析本地文件,避免重复读取,但在实时场景中反而影响了性能。因此,在实时场景中,关闭缓存更为合适。
补充说明:若在本地虚拟机环境下,不启用缓存也能实现流畅播放。然而,如果 SRS 部署在局域网的另一台机器上,不开启缓存可能导致视频卡顿,原因可能是解码前未能及时读取视频帧,FFplay 不断丢弃视频帧,尤其是当视频比音频慢时,这种情况下缓存功能反而成为瓶颈。