皮皮网
皮皮网

【qt静态编译源码】【lettuce架构源码】【wait源码分析】ring的源码_rm源码

来源:华人代购 源码 发表时间:2024-11-30 13:26:33

1.C++代码 有办法封A变速齿轮么?
2.技术干货!码r码DPDK新手入门到网络功能深入理解
3.简单概括Linux内核源码高速缓存原理(图例解析)
4.无锁队列是码r码否不适用于大容量应用场景?
5.DPDK 无锁环形队列(Ring)详解--段子解法
6.linux源码解读(三十二):dpdk原理概述(一)

ring的源码_rm源码

C++代码 有办法封A变速齿轮么?

       正常 我机器以前也遇到这方面问题

       在系统时间上与WINDOS进行同步连接

       变速齿轮的原理是把一个程序在处理上先进行这个软件上的过滤

       下面是其中一段源代码

       // File name : SetClock.cpp

       // Function1 : SetClock9x(int)

       // Function2 : SetClockNT(int)

       // Chu Rui .3.1

       #include "stdafx.h"

       #include "ntport.h"

       #define FREE_INT_NO 5

       void Ring0()

       { //在Windows9x下进入ring0后进行的操作

        __asm

        {

        cli

        mov al,h

        out h,al //写入控制寄存器,设置写0号定时器

        mov ax,码r码bx

        out h,al //写定时值低位

        mov al,ah

        out h,al //写定时值高位

        sti

        iretd;

        }

       }

       void SetClockNT(int freq)

       { //NT下的操作

        //这里使用了NT Port库

        Outport(0x,0x); //写入控制寄存器,设置写0号定时器

        Outport(0x,码r码freq&0xff); //写定时值低位

        Outport(0x,(freq>>8)&0xff); //写定时值高位

       }

       void SetClock9x(int freq)

       {

        union Function_Pointer

        {

        void (*pointer)();

        char bytes[sizeof(void *)];

        }OldIntAddress,NewIntAddress;

        int IDTAddress; //IDT表基地址

        int IDTItemAddress; //要修改的中断门所在地址

        char *Pointer; //要修改的中断门所在地址,指针形式

        __asm

        {

        push eax

        sidt [esp-2]

        pop eax

        mov IDTAddress,码r码eax //得到IDT表基地址

        }

        IDTItemAddress=FREE_INT_NO*8+IDTAddress;

        Pointer=(char *)IDTItemAddress;

        NewIntAddress.pointer=Ring0;

        OldIntAddress.bytes[0]=Pointer[0];

        OldIntAddress.bytes[1]=Pointer[1];

        OldIntAddress.bytes[2]=Pointer[6];

        OldIntAddress.bytes[3]=Pointer[7]; //保存旧的中断门

        Pointer[0]=NewIntAddress.bytes[0];

        Pointer[1]=NewIntAddress.bytes[1];

        Pointer[6]=NewIntAddress.bytes[2];

        Pointer[7]=NewIntAddress.bytes[3]; //设置新的中断门

        __asm

        {

        mov ebx,freq

        int FREE_INT_NO //产生中断,进入ring0

        }

        Pointer[0]=OldIntAddress.bytes[0];

        Pointer[1]=OldIntAddress.bytes[1];

        Pointer[6]=OldIntAddress.bytes[2];

        Pointer[7]=OldIntAddress.bytes[3]; //恢复旧的码r码qt静态编译源码中断门

       }

技术干货!DPDK新手入门到网络功能深入理解

       DPDK新手入门

       一、码r码安装

       1. 下载源码

       DPDK源文件由几个目录组成。码r码

       2. 编译

       二、码r码配置

       1. 预留大页

       2. 加载 UIO 驱动

       三、码r码运行 Demo

       DPDK在examples文件下预置了一系列示例代码,码r码这里以Helloworld为例进行编译。码r码

       编译完成后会在build目录下生成一个可执行文件,码r码通过附加一些EAL参数可以运行起来。码r码

       以下参数都是码r码比较常用的

       四、核心组件

       DPDK整套架构是基于以下四个核心组件设计而成的

       1. 环形缓冲区管理(librte_ring)

       一个无锁的多生产者,多消费者的FIFO表处理接口,可用于不同核之间或是逻辑核上处理单元之间的通信。

       2. 内存池管理(librte_mempool)

       主要职责是在内存中分配用来存储对象的pool。 每个pool以名称来唯一标识,并且使用一个ring来存储空闲的对象节点。 它还提供了一些其他的服务,如针对每个处理器核心的缓存或者一个能通过添加padding来使对象均匀分散在所有内存通道的对齐辅助工具。

       3. 网络报文缓冲区管理(librte_mbuf)

       它提供了创建、释放报文缓存的能力,DPDK应用程序可能使用这些报文缓存来存储数据包。这个缓存通常在程序开始时通过DPDK的mempool库创建。这个库提供了创建和释放mbuf的API,能用来暂存数据包。

       4. 定时器管理(librte_timer)

       这个模块为DPDK的lettuce架构源码执行单元提供了异步执行函数的能力,也能够周期性的触发函数。它是通过环境抽象层EAL提供的能力来获取的精准时间。

       五、环境抽象层(EAL)

       EAL是用于为DPDK程序提供底层驱动能力抽象的,它使DPDK程序不需要关注下层具体的网卡或者操作系统,而只需要利用EAL提供的抽象接口即可,EAL会负责将其转换为对应的API。

       六、通用流rte_flow

       rte_flow提供了一种通用的方式来配置硬件以匹配特定的Ingress或Egress流量,根据用户的任何配置规则对其进行操作或查询相关计数器。

       这种通用的方式细化后就是一系列的流规则,每条流规则由多种匹配模式和动作列表组成。

       一个流规则可以具有几个不同的动作(如在将数据重定向到特定队列之前执行计数,封装,解封装等操作),而不是依靠几个规则来实现这些动作,应用程序操作具体的硬件实现细节来顺序执行。

       1. 属性rte_flow_attr

       a. 组group

       流规则可以通过为其分配一个公共的组号来分组,通过jump的流量将执行这一组的操作。较低的值具有较高的优先级。组0具有最高优先级,且只有组0的规则会被默认匹配到。

       b. 优先级priority

       可以将优先级分配给流规则。像Group一样,较低的值表示较高的优先级,0为最大值。

       组和优先级是任意的,取决于应用程序,它们不需要是wait源码分析连续的,也不需要从0开始,但是最大数量因设备而异,并且可能受到现有流规则的影响。

       c. 流量方向ingress or egress

       流量规则可以应用于入站和/或出站流量(Ingress/Egress)。

       2. 模式条目rte_flow_item

       模式条目类似于一套正则匹配规则,用来匹配目标数据包,其结构如代码所示。

       首先模式条目rte_flow_item_type可以分成两类:

       同时每个条目可以最多设置三个相同类型的结构:

       a. ANY可以匹配任何协议,还可以一个条目匹配多层协议。

       b. ETH

       c. IPv4

       d. TCP

       3. 操作rte_flow_action

       操作用于对已经匹配到的数据包进行处理,同时多个操作也可以进行组合以实现一个流水线处理。

       首先操作类别可以分成三类:

       a. MARK对流量进行标记,会设置PKT_RX_FDIR和PKT_RX_FDIR_ID两个FLAG,具体的值可以通过hash.fdir.hi获得。

       b. QUEUE将流量上送到某个队列中

       c. DROP将数据包丢弃

       d. COUNT对数据包进行计数,如果同一个flow里有多个count操作,则每个都需要指定一个独立的id,shared标记的计数器可以用于统一端口的不同的flow一同进行计数。

       e. RAW_DECAP用来对匹配到的数据包进行拆包,一般用于隧道流量的剥离。在action定义的时候需要传入一个data用来指定匹配规则和需要移除的内容。

       f. RSS对流量进行负载均衡的操作,他将根据提供的数据包进行哈希操作,并将其移动到对应的队列中。

       其中的level属性用来指定使用第几层协议进行哈希:

       g. 拆包Decap

       h. One\Two Port Hairpin

       七、常用API

       1. 程序初始化

       2. 端口初始化

       3. 队列初始化

       DPDK-网络协议栈-vpp-ovs-DDoS-虚拟化技术

       DPDK技术路线视频教程地址立即学习

       一、DPDK网络

       1. 网络协议栈项目

       2.dpdk组件项目

       3.dpdk经典项目

       二、DPDK框架

       1. 可扩展的矢量数据包处理框架vpp(c/c++)

       2.DPDK的虚拟交换机框架OvS

       3.golang的网络开发框架nff-go(golang)

       4. 轻量级的switch框架snabb(lua)

       5. 高效磁盘io读写spdk(c)

       三、DPDK源码

       1. 内核驱动

       2. 内存

       3. 协议

       4. 虚拟化

       5. cpu

       6. 安全

       四、实时白板源码性能测试

       1. 性能指标

       2. 测试方法

       3. 测试工具DPDK相关学习资料分享:点击领取,备注DPDK

       DPDK新手入门原文链接:DPDK上手

简单概括Linux内核源码高速缓存原理(图例解析)

       高速缓存(cache)概念和原理涉及在处理器附近增加一个小容量快速存储器(cache),基于SRAM,由硬件自动管理。其基本思想为将频繁访问的数据块存储在cache中,CPU首先在cache中查找想访问的数据,而不是直接访问主存,以期数据存放在cache中。

       Cache的基本概念包括块(block),CPU从内存中读取数据到Cache的时候是以块(CPU Line)为单位进行的,这一块块的数据被称为CPU Line,是CPU从内存读取数据到Cache的单位。

       在访问某个不在cache中的block b时,从内存中取出block b并将block b放置在cache中。放置策略决定block b将被放置在哪里,而替换策略则决定哪个block将被替换。

       Cache层次结构中,Intel Core i7提供一个例子。cache包含dCache(数据缓存)和iCache(指令缓存),解决关键问题包括判断数据在cache中的位置,数据查找(Data Identification),地址映射(Address Mapping),替换策略(Placement Policy),以及保证cache与memory一致性的问题,即写入策略(Write Policy)。

       主存与Cache的地址映射通过某种方法或规则将主存块定位到cache。映射方法包括直接(mapped)、全相联(fully-associated)、一对多映射等。小说订阅源码直接映射优点是地址变换速度快,一对一映射,替换算法简单,但缺点是容易冲突,cache利用率低,命中率低。全相联映射的优点是提高命中率,缺点是硬件开销增加,相应替换算法复杂。组相联映射是一种特例,优点是提高cache利用率,缺点是替换算法复杂。

       cache的容量决定了映射方式的选取。小容量cache采用组相联或全相联映射,大容量cache采用直接映射方式,查找速度快,但命中率相对较低。cache的访问速度取决于映射方式,要求高的场合采用直接映射,要求低的场合采用组相联或全相联映射。

       Cache伪共享问题发生在多核心CPU中,两个不同线程同时访问和修改同一cache line中的不同变量时,会导致cache失效。解决伪共享的方法是避免数据正好位于同一cache line,或者使用特定宏定义如__cacheline_aligned_in_smp。Java并发框架Disruptor通过字节填充+继承的方式,避免伪共享,RingBuffer类中的RingBufferPad类和RingBufferFields类设计确保了cache line的连续性和稳定性,从而避免了伪共享问题。

无锁队列是否不适用于大容量应用场景?

       在处理海量数据的挑战中,许多公司倾向于通过构建分布式集群来提升服务器性能。然而,传统的多核服务器中,锁的管理往往成为瓶颈。这时,无锁数据结构如DPDK的rte_ring就显得尤为重要,它提供了无锁、支持多/单生产者/消费者操作的高效FIFO解决方案,尤其是在内存密集型应用中,其速度优势显著。rte_ring虽有固定大小可能导致内存浪费的局限,但它在DPDK应用间通信和内存池管理中展现出强大实用性,尤其是通过prod_head/tail和cons_head/tail指针以及"name"字段的巧妙设计。

       理解rte_ring的单生产者/消费者模式并非易事,入队操作涉及head/tail的更新,代码实现复杂且需要深入理解。要直观掌握其工作原理,结合实际代码和深入剖析是必不可少的。即使是文字描述和代码注释,也可能让人感到晦涩难懂。

       在多生产者/多消费者模式中,rte_ring的应用更为复杂。入队操作涉及两个或更多的CPU,通过Compare-And-Swap(CAS)指令确保并发操作的线程安全。首先,每个核会保存队列的状态;接着,CPU1执行并更新队列信息;然后,多个核同步更新prod_head;最后,操作完成,各核协同作业。

       而对于多消费者-出队操作,虽然官方文档并未详细阐述,但开发者可以通过查阅源代码学习其实际实现。《程序员指南》等参考资料是深入探究的宝贵资源。这表明,无锁队列在大规模应用场景中并非不适用,而是需要更深入的技术理解和实践经验来优化其性能和使用。

       总结来说,无锁队列如rte_ring在处理大容量场景中确实面临着挑战,特别是对于复杂多线程环境。然而,通过深入理解其工作原理、利用适当的并发控制机制,以及借助相关文档和源代码,我们能够巧妙地将其融入实际应用,实现高效的数据处理和通信。

DPDK 无锁环形队列(Ring)详解--段子解法

       在大数据处理需求日益增长的背景下,公司通常通过分布式集群来扩展服务器资源。然而,在多核服务器中,传统的锁机制并不理想。DPDK提供了一种无锁数据结构,即环形队列(Ring),尽管理解起来有些困难,尤其通过文字描述和代码实现。

       为便于理解,我尝试以幽默的段子形式来解析DPDK中的环形队列。首先,环形队列在DPDK中常用于队列管理,它具有固定大小,不同于链表的动态性。与链表队列相比,环形队列的优点包括高效性和无锁操作,但同时也存在空间固定和并发访问时可能出现的环形溢出问题。

       环形队列的应用场景包括数据传输和多线程协作。在源码中,环形队列由prod_head, prod_tail, cons_head, cons_tail四个指针标识,利用unsigned int的溢出特性,head和tail的范围为0~2^。通过rte_ring_create创建的队列以"name"标识,保证其唯一性。

       接下来,我们以单生产者/单消费者模式为例,描述了入队和出队操作。生产者负责更新prod_head和prod_tail,消费者则操作cons_head和cons_tail。生产者入队时,类似于预定房间并添加对象,出队则类似退房并移动指针。在多生产者/多消费者模式中,无锁操作通过CAS指令实现,多个CPU间的同步依赖于内存屏障。

       虽然故事化讲解有助于理解,但源码仍然是理解环形队列的最佳途径。关于多消费者出队,官方文档未详细说明,但源码提供了解答。通过这种直观的解释,DPDK的无锁环形队列概念应该更容易把握了。

linux源码解读(三十二):dpdk原理概述(一)

       Linux源码解析(三十二):深入理解DPDK原理(一)

       几十年来,随着技术的发展,传统操作系统和网络架构在处理某些业务需求时已显得力不从心。为降低修改底层操作系统的高昂成本,人们开始在应用层寻求解决方案,如协程和QUIC等。然而,一个主要问题在于基于内核的网络数据IO,其繁琐的处理流程引发了效率低下和性能损耗。

       传统网络开发中,数据收发依赖于内核的receive和send函数,经过一系列步骤:网卡接收数据、硬件中断通知、数据复制到内存、内核线程处理、协议栈层层剥开,最终传递给应用层。这种长链式处理方式带来了一系列问题,如上下文切换和协议栈开销。

       为打破这种限制,Linux引入了UIO(用户空间接口设备)机制,允许用户空间直接控制网卡,跳过内核协议栈,从而大大简化了数据处理流程。UIO设备提供文件接口,通过mmap映射内存,允许用户直接操作设备数据,实现绕过内核控制网络I/O的设想。

       DPDK(Data Plane Development Kit)正是利用了UIO的优点,如Huge Page大页技术减少TLB miss,内存池优化内存管理,Ring无锁环设计提高并发性能,以及PMD poll-mode驱动避免中断带来的开销。它采用轮询而非中断处理模式,实现零拷贝、低系统调用、减少上下文切换等优势。

       DPDK还注重内存分配和CPU亲和性,通过NUMA内存优化减少跨节点访问,提高性能,并利用CPU亲和性避免缓存失效,提升执行效率。学习DPDK,可以深入理解高性能网络编程和虚拟化领域的技术,更多资源可通过相关学习群获取。

       深入了解DPDK原理,可以从一系列资源开始,如腾讯云博客、CSDN博客、B站视频和LWN文章,以及Chowdera的DPDK示例和腾讯云的DPDK内存池讲解。

       源:cnblogs.com/thesevenths...

相关栏目:时尚

.重点关注