1.开源即时通讯GGTalk源码剖析之:客户端全局缓存及本地存储
2.Vue3核心源码解析 (一) : 源码目录结构
3.Spark源码解析2-YarnCluster模式启动
4.Java教程:dubbo源码解析-网络通信
5.分析流媒体服务器源码:Rtmp发布流程的解析解析SRS解析
6.RocketMQ 消费者(2)客户端设计和启动流程详解 & 源码解析
开源即时通讯GGTalk源码剖析之:客户端全局缓存及本地存储
继上篇详细介绍了 GGTalk 内置的虚拟数据库,本文将深入探讨 GGTalk 客户端的客户客户全局缓存及本地存储机制。对于还没有获取GGTalk源码的源码源码朋友,文章底部附有下载链接。解析解析
一. GGTalk 客户端缓存设计
核心在于ClientGlobalCache类,客户客户它在内存中保存用户和群组数据。源码源码dohome源码此类接受泛型参数TUser和TGroup,解析解析且限定TUser和TGroup需实现特定接口,客户客户还继承自BaseGlobalCache类。源码源码三个私有字段分别用于存储用户、解析解析群组和缓存信息。客户客户
构造函数接收五个参数,源码源码用于初始化私有字段,解析解析并调用父类BaseGlobalCache的客户客户Initialize方法,实现缓存初始化逻辑。源码源码
二. GGTalk 客户端本地持久化存储
BaseGlobalCache类中,originUserLocalPersistence字段负责本地文件存储。它包含四个属性,代表好友列表、群组列表、快捷回复列表和最近联系人/群列表。
Load和Save方法用于读写本地文件,将数据存入或从文件加载。在了解本地缓存的核心概念后,回到Initialize方法,读取本地文件数据,缓存到内存中。
三. 更新本地缓存
在用户登录或断线重连时,系统会比较本地缓存与服务器数据,更新缺失或过时的信息。当缓存中只有用户自己时,会从服务器加载所有联系人;当存在其他数据时,会更新本地缓存以反映服务器最新状态。
四. 总结
GGTalk客户端缓存流程包括读取本地缓存、从服务器加载更新数据,以及在窗口关闭时将当前用户数据缓存。下篇将解析消息收发及处理机制。
敬请期待:《GGTalk 开源即时通讯系统源码剖析之:消息收发及处理》。底部链接提供下载GGTalk源码。
Vue3核心源码解析 (一) : 源码目录结构
通过软件框架源码阅读,深入理解框架运行机制,API设计、原理及流程成为开发者进阶的学校网站源码开源关键。Vue 3源码相较于Vue 2版本的改进明显,采用Monorepo目录结构,引入TypeScript作为开发语言,新增特性和优化显著。
启动Vue3源码,最新版本为V3.3.0-alpha.5。下载后进入core文件夹,使用Yarn进行构建。安装依赖后,执行npm run dev启动调试模式,可直观查看完整的源代码目录结构。
核心模块包括compiler-core、compiler-dom、runtime-core、runtime-dom。compiler模块在编译阶段负责将.vue文件转译成浏览器可识别的.js文件,runtime模块则负责程序运行时的处理。reactivity目录内是响应式机制的源码,遵循Monorepo规范,每个子模块独立编译打包,通过require引入。
构建Vue 3版本可使用命令,构建结果保存在core\packages\vue\dist目录下。选择性构建可通过命令实现,具体参数配置在core/rollup.config.js中查看。对于客户端编译模板,需构建完整版本,而使用Webpack的vue-loader时,.vue文件中的模板在构建时预编译,无需额外编译器。浏览器直接打开页面时采用完整版本,构建工具如Webpack引入运行时版本。Vue的构建脚本源码位于core/scripts下。
Spark源码解析2-YarnCluster模式启动
YARN 模式运行机制主要体现在Yarn Cluster 模式和Yarn Client 模式上。在Yarn Cluster模式下,SparkSubmit、ApplicationMaster 和 CoarseGrainedExecutorBackend 是独立的进程,而Driver 是独立的线程;Executor 和 YarnClusterApplication 是对象。在Yarn Client模式下,SparkSubmit、ApplicationMaster 和 YarnCoarseGrainedExecutorBackend 也是独立的进程,而Executor和Driver是开心农场asp源码对象。
在源码中,SparkSubmit阶段首先执行Spark提交命令,底层执行的是开启SparkSubmit进程的命令。代码中,SparkSubmit从main()开始,根据运行模式获取后续要反射调用的类名赋给元组中的ChildMainClass。如果是Yarn Cluster模式,则为YarnClusterApplication;如果是Yarn Client模式,则为主类用户自定义的类。接下来,获取ChildMainClass后,通过反射调用main方法的过程,反射获取类然后通过构造器获取一个示例并多态为SparkApplication,再调用它的start方法。随后调用YarnClusterApplication的start方法。在YarnClient中,new一个Client对象,其中包含了yarnClient = YarnClient.createYarnClient属性,这是Yarn在SparkSubmit中的客户端,yarnClient在第行初始化和开始,即连接Yarn集群或RM。之后就可以通过这个客户端与Yarn的RM进行通信和提交应用,即调用run方法。
ApplicationMaster阶段主要涉及开启一个Driver新线程、AM向RM注册、AM向RM申请资源并处理、封装ExecutorBackend启动命令以及AM向NM通信提交命令由NM启动ExecutorBackend。在ApplicationMaster进程中,首先开启Driver线程,开始运行用户自定义代码,创建Spark程序入口SparkContext,接着创建RDD,生成job,划分阶段提交Task等操作。
在申请资源之前,AM主线程创建了Driver的终端引用,作为参数传入createAllocator(),因为Executor启动后需要向Driver反向注册,所以启动过程必须封装Driver的EndpointRef。AM主线程向RM申请获取可用资源Container,并处理这些资源。ExecutorBackend阶段尚未完成,养生类网站源码后续内容待补充。
Java教程:dubbo源码解析-网络通信
在之前的内容中,我们探讨了消费者端服务发现与提供者端服务暴露的相关内容,同时了解到消费者端通过内置的负载均衡算法获取合适的调用invoker进行远程调用。接下来,我们聚焦于远程调用过程,即网络通信的细节。
网络通信位于Remoting模块中,支持多种通信协议,包括但不限于:dubbo协议、rmi协议、hessian协议、mitRoot函数,该函数执行组件的did生命周期和setState回调。
2. diff
diff过程包含diff、diffElementNodes、diffChildren、diffProps四个函数。diff主要处理函数型虚拟节点,非函数型节点调用diffElementNodes处理。判断虚拟节点是否存在_component属性,若无则实例化,执行组件生命周期,调用render方法,保存子节点至_children属性,进而调用diffChildren。 diffElementNodes处理HTML型虚拟节点,创建真实DOM节点,查找复用,若无则创建文本或元素节点。diffProps处理节点属性,如样式、事件监听等。diffChildren比较子节点并添加至当前DOM节点。 分析diff执行流程,render函数后调用diff比较虚拟节点,执行App组件生命周期和render方法,保存返回的虚拟节点至_children属性,调用diffChildren比较子节点。整体虚拟节点树如下: diffChildren遍历子节点,查找DOM节点,比较虚拟节点,chromium 42 源码下载返回真实DOM,追加至parentDOM或子节点后。三. 组件
1. component
Component构造函数设置状态、强制渲染、定义render函数和enqueueRender函数。 强制渲染通过设置_force标记,加入渲染队列并执行。_force为真时,diff渲染不会触发某些生命周期。 render函数默认为Fragment组件,返回子节点。 enqueueRender将待渲染组件加入队列,延迟执行process函数。process排序组件,渲染最外层组件,调用renderComponent渲染,更新DOM后执行所有组件的did生命周期和setState回调。2. context
使用案例展示跨组件传递数据。createContext创建context,包含Provider和Consumer组件。Provider组件跨组件传递数据,Consumer组件接收数据。 源码简单,createContext后返回context对象,包含Consumer与Provider组件。Consumer组件设置contextType属性,渲染时执行子节点,等同于类组件。 Provider组件创建函数,渲染到Provider组件时调用getChildContext获取ctx对象,diff时传递至子孙节点组件。组件设置contextType,通过sub函数订阅Provider组件值更新,值更新时渲染订阅组件。四. 解惑疑点
理解代码意图。支持Promise时,使用Promise处理,否则使用setTimeout。了解Promise.prototype.then.bind(Promise.resolve())最终执行的Promise.resolve().then。 虚拟节点用Fragment包装的原因是,避免直接调用diffElementNodes,以确保子节点正确关联至父节点DOM。 hydrate与render的区别在于,hydrate仅处理事件,不处理其他props,适用于服务器端渲染的HTML,客户端渲染使用hydrate提高首次渲染速度。 props中value与checked单独处理,diffProps不处理,处理在diffChildren中,找到原因。 在props中设置value为空的原因是,遵循W3C规定,不设置value时,文本内容作为value。为避免MVVM问题,需在子节点渲染后设置value为空,再处理元素value。 组件异常处理机制中,_processingException和_pendingError变量用于标记组件异常处理状态,确保不会重复跳过异常组件。 diffProps中事件处理机制,为避免重复添加事件监听器,只在事件函数变化时修改dom._listeners,触发事件时仅执行保存的监听函数,移除监听在onChange设置为空时执行。 理解_nextDom的使用,确保子节点与父节点关联,避免在函数型节点渲染时进行不必要的关联操作。JSF源码分析(一)
在深入分析 JSF 框架的源码时,我们首先关注的是核心的功能模块,以帮助我们理解其工作原理。通常,我们从常见的项目 XML 配置文件入手,这些文件包含了 JSF 框架的基本设置。让我们以地址服务的 jsf-provider.xml 文件为例,进行详细的解析。
在 JSF 的配置文件中,虽然没有直接显示注册中心的内容,但作为自研的高性能 RPC 调用框架,高可用的注册中心是其核心功能之一。因此,我们接下来将探索如何在没有提供注册中心地址的情况下,这些标签是如何完成服务的注册和订阅的。
### 配置解析
首先,我们发现配置文件中自定义的 xsd 文件,通过 NamespaceUri 链接到 jsf.jd.com/schema/jsf/j...。随后,基于 SPI(Service Provider Interface)机制,我们在 META-INF 中找到了定义好的 Spring.handlers 文件和 Spring.schemas 文件,这两个文件分别用于配置解析器和 xsd 文件的具体路径。
进一步地,我们查询了继承自 NamespaceHandlerSupport 或实现 NamespaceHandler 接口的类。在 JSF 框架中,JSFNamespaceHandler 通过继承 NamespaceHandlerSupport 实现了对自定义命名空间的解析功能。NamespaceHandler 的主要作用是解析我们自定义的 JSF 命名空间,通过 BeanDefinitionParser 对特定标签进行处理,完成对 XML 中配置信息的具体处理。
### 服务暴露
最终,通过 JSFBeanDefinitionParser 实现了 org.springframework.beans.factory.xml.BeanDefinitionParser,完成 XML 配置的解析。解析的结果会注册到 BeanDefinitionRegistry 对象中,进而触发 Bean 的初始化过程。最终,ProviderBean 实例监听上下文事件,在容器初始化完毕后,调用 export() 方法进行服务的暴露。
### 服务注册与暴露
服务暴露的实现逻辑集中在 ProviderConfig#doExport 方法中。首先,方法会对配置进行基本校验和拦截。随后,获取所有 RegistryConfig,如果获取不到注册中心地址,将使用默认的注册中心地址:“i.jsf.jd.com”。接着,根据 Provider 配置中的 server 相关信息启动 server,并使用默认序列化方式(如 msgpack)进行服务编码。然后,通过 ServerFactory 初始化并启动 Server,调用 ServerTransportFactory 生成对应的传输层,实现与注册中心的通信。最后,服务注册通过 JSFRegistry 类完成,该类连接注册中心,如果没有可用的中心,则使用本地文件并开启守护线程,使用两个线程池进行心跳检测、重试机制和连接状态监控。至此,服务从配置装配到服务暴露的过程完成。
### 消费者配置与初始化
对于消费者端(jsf-consumer.xml),注册中心地址(如“i.jsf.jd.com”)被配置在其中,而 Provider 的配置则在 jsf-provider.xml 中。配置解析过程与 Provider 类似,最终解析为 ConsumerConfig 和 RegistryConfig。通过 ConsumerBean 类实现 FactoryBean 接口,以便通过 getObject() 方法获取代理对象,完成客户端的初始化。在这个过程中,消费者会根据配置订阅相关的 Provider 服务。核心代码在 ConsumerConfig#refer 方法中,该方法通过调用子类的 subscribe() 方法开始订阅过程,连接 Provider 服务。
### 框架流程概述
综上所述,JSF 框架通过 Provider、Consumer 和注册中心(Registry)之间的协同工作,实现了高效的服务注册、订阅和通信。具体流程包括:
1. **Provider 端**:启动服务向注册中心注册,并根据配置初始化相关组件。
2. **Consumer 端**:首次获取实体信息时,通过 FactoryBean 接口获取代理对象,完成初始化并订阅 Provider 服务。
3. **注册中心**:提供异步通知机制,监控服务状态变化。
4. **服务调用**:直接调用服务方法。
5. **监控与治理**:框架内置监控机制,支持服务治理和降级容灾策略。
了解这一过程对于深入理解 JSF 框架的内部机制至关重要,也为后续的模块分析和系统优化提供了基础。
Retrofit2.9.0源码解析
前言 之前我们探讨了OkHttp的基本原理,这款以高效的线程池设计、任务分配与转化以及基于责任链模式的五大全拦截器而深受开发者喜爱的库,却在引入时需要进行封装,以适应主、子线程的切换与返回值的转换。面对团队成员的偏好,选择Retrofit作为解决方案,无疑提升了团队协作的友好性。接下来,我们将深度剖析这个优秀的开源框架是如何促进团队合作的。 使用 以下代码摘自Retrofit的官方示例,除了线程管理部分,其余部分基本相同,可以直接在Android Studio项目中运行。Retrofit的使用方式相对直观,但在此不再赘述,直接进入源码解析。 Retrofit的封装模式在于为OkHttp提供了一层更友好的调用方式,实质上仍依赖OkHttp执行网络请求。正如一把剑,除了锋利的刃之外,剑柄、剑鞘和符咒共同决定了它的使用体验。Retrofit与OkHttp的关系图展示了它们之间的爱恨纠葛。 Retrofit.build()方法详解 在Retrofit构建实例的过程中,以下关键步骤被实现:判断并设置baseUrl。
赋值callFactory,即OkHttp客户端。
若未指定callFactory,则默认使用OkHttpClient。
设置callbackExecutor,用于线程切换。
赋值callAdapterFactories,用于处理网络请求的转换。
其中,callbackExecutor的默认值是Android平台的MainThreadExecutor,确保了执行方法后线程切换至主线程。callAdapterFactories是一个工厂模式的列表,用于创建不同的callAdapter,以处理网络请求的关键步骤(enqueue、execute)。 在Android平台下,defaultCallbackExecutor被构造为MainThreadExecutor的实例,通过Handler与Looper的关联确保了线程切换。 最后,我们了解了converterFactories的作用,这是负责服务端返回值转换的关键组件。 Retrofit.create()方法解析 在调用Retrofit.create()方法时,动态代理(Proxy.newProxyInstance)发挥关键作用。这个过程类比于N女士委托X律师处理问题,动态代理将实体方法的调用转化为OkHttp请求的执行。 动态代理通过反射机制,实现所有请求的统一处理,简化了接口的使用,同时增强了功能。尽管它可能导致性能损耗,但Retrofit的高效与强大使其成为众多开发者的首选。 代理执行的关键步骤包括:明确动态代理概念。
理解invoke()方法的执行时机。
分析github(代理).contributors方法的执行流程。
通过动态代理,Retrofit实现了对网络请求的封装,简化了开发过程,并提供了灵活的适配性。最终,请求通过OkHttp客户端执行,返回值通过适配器转换为预期格式。 生成Call与执行网络请求 在生成Call后,执行network request的过程由OkHttp客户端负责。在Retrofit的实现中,Call的创建与执行紧密相连,最终通过OkHttp的Call.execute()方法完成网络请求的执行。 结语 撰写源码解析的过程不仅加深了对Retrofit的理解,也揭示了其作为团队协作工具的潜力。通过阅读优秀源码,开发者可以不断提升自我,学习到更深层次的知识与技能。Retrofit以其简洁、高效的设计,为开发者提供了强大的网络请求支持,成为了Android开发中的重要组件。源码的探索之旅,既是一次技术的修炼,也是对开源精神的致敬。