【冷冻溯源码】【dvbbs源码 会展】【falkon源码分析】vgg源码

来源:骖马与源码

1.ASRT:一个中文语音识别系统
2.[CV - 图像分类 - 论文复现] 深度学习之图像分类经典模型 - MMClassification(二)- 初步认识
3.ResNet论文笔记及代码剖析
4.如何评价cvpr2021的论文接收结果?
5.基于改进Deeplabv3+的视频人像背景替换系统(源码&教程)
6.必知必会的VGG网络(含代码)

vgg源码

ASRT:一个中文语音识别系统

       ASRT是AI柠檬博主开发的中文语音识别系统,基于深度学习,采用CNN和CTC方法训练,具有高准确率。系统包含声学模型、语言模型,冷冻溯源码提供基于ASRT的语音识别应用软件,支持Windows UWP和.Net平台。深度学习在语音识别领域的影响深远,ASRT采用深层全卷积神经网络,结合VGG网络配置,实现端到端训练,将语音波形转录为中文拼音,再通过最大熵隐含马尔可夫模型转换为文本。项目使用Python的HTTP协议基础服务器包,提供网络HTTP协议的语音识别API。系统流程包括特征提取、声学模型、CTC解码和语言模型,基于HTTP协议的API接口支持语音识别功能。客户端分为UWP和WPF两种,通过自动控制录音和异步请求实现长时间连续语音识别。未来,ASRT将加入说话人识别系统,实现AI实际应用中的“认主”行为。项目源码在GitHub上开源。

[CV - 图像分类 - 论文复现] 深度学习之图像分类经典模型 - MMClassification(二)- 初步认识

       本文将深入探讨深度学习中图像分类的经典模型,从理论到实践,以期复现实用的图像分类算法。

       首先回顾上一期内容,了解图像分类的基本框架。输入为图像,经过深度学习模型(如卷积神经网络CNN或自注意机制Transformer)自动提取特征,dvbbs源码 会展然后通过全连接层(MLP)加上Softmax分类器,最终输出类别标签。

       代码实现方面,项目源码位于github.com/open-mmlab/m...。以@OpenMMLab为代表的代码框架,包括配置文件、数据集、模型、训练策略和运行设置等组件,为实现图像分类任务提供了全面的支持。

       具体而言,配置文件包含模型、数据集等参数设置;数据集格式支持多种,例如ImageNet和自定义CustomDataset;模型包含经典的ResNet、VGG、MobileNet系列、DenseNet等;训练策略定义优化器、学习率等参数;运行设置控制模型运行方式;工具包则提供了训练、测试、推理等接口。

       综上,深度学习图像分类算法主要包括CNN机制、Transformer机制、数据增强方法、激活函数选择和细粒度分类技术。从AlexNet到ResNet、MobileNet、DenseNet、RepVGG等模型,再到ViT、MobileViT、DeiT等新兴模型,falkon源码分析展示了深度学习在图像分类领域的不断进步。

       在具体实现中,使用工具包中的train.py、text.py等命令,可实现单张GPU或多张GPU的训练、测试和推理操作。数据增强方法如Mixup、Cutout和CutMix,以及激活函数SiLU等,有助于提升模型性能。

       图像分类的应用广泛,例如生物医学图像分类,用于识别COVID-。通过对这些模型的复现与应用,可以更好地理解图像分类技术,推动相关领域的发展。

ResNet论文笔记及代码剖析

       ResNet是何凯明等人在年提出的深度学习模型,荣获CVPR最佳论文奖,并在ILSVRC和COCO比赛上获得第一。该模型解决网络过深导致的梯度消失问题,并通过残差结构提升模型性能。

       ResNet基于深度学习网络深度的增加,提出通过残差结构解决网络退化问题。关键点包括:将网络分解为两分支,一为残差映射,一为恒等映射,网络仅需学习残差映射,简化计算复杂度。残差结构可以使用多层全连接层或卷积层实现,且不增加参数量。升维方式采用全补0或1 x 1卷积,后者在实验中显示更好的瑞蚁源码性能。

       ResNet网络结构由多个残差块组成,每个块包含一个或多个残差结构。VGG-网络基础上添加层形成plain-,其计算复杂度仅为VGG-的%。ResNet模型引入bottleneck结构,通过1 x 1卷积降维和升维实现高效计算。Res、Res、Res等模型采用bottleneck结构,第一个stage输入channel维度统一为,跨层连接后需调整维度匹配。

       实验结果表明,ResNet解决了网络退化问题,Res模型在保持良好性能的同时,收敛速度更快。ResNet的性能优于VGGNet,尤其是在更深的网络结构下。使用Faster R-CNN检测时,将VGG-替换为ResNet-,发现显著提升。

       在PyTorch官方代码实现中,ResNet模型包含五种基本形式,每种形式在不同阶段的卷积结构各有特点。以Res为例,其源码包含预训练模型和参数设置,每个stage的残差块数量根据模型不同而变化。关键点包括选择BasicBlock或Bottleneck作为网络结构基础,以及采用1 x 1卷积实现高效降维与升维。

如何评价cvpr的论文接收结果?

       本届CVPR论文接收结果令人满意,实习期间参与的两个项目——RepVGG和Diverse Branch Block(简称ACNet v2)均成功入选。RepVGG是一款基于VGG架构的极简设计,摒弃了分支结构,年度总结源码仅采用3x3卷积层,该设计在ImageNet数据集上达到.5%的准确率,与当前顶尖架构如RegNet相比,性能有明显提升。项目源代码和模型已开放,GitHub上收获+星。

       Diverse Branch Block设计了一种通用的构建模块,通过将平均池化、1x1卷积和3x3卷积连续连接的块(Inception-like block)替换传统卷积,大幅提升了模型的微观结构复杂度。独特之处在于,该复杂块在训练结束后可转换为一个单一卷积层,保证了模型最终大小和速度与使用普通卷积的模型一致。

       两个项目共通之处在于均采用结构重参数化技术,即一组参数可对应多个结构,通过等价转换实现结构间的等效替换。结构重参数化的应用包括ACNet(ICCV-)、ResRep(去年的剪枝方法)等。这种技术不仅能够提高模型性能,实现无损压缩,还简化了架构设计。

       总结而言,重参数化技术展现出巨大的潜力,既能暴力提升性能,又能实现无损压缩,简化架构设计。未来有望挖掘更多应用。

基于改进Deeplabv3+的视频人像背景替换系统(源码&教程)

       视频背景替换技术在图像处理和视频编辑领域具有重要地位,旨在从视频序列中提取前景信息并将其融合到新背景中,以减少制作成本、改善抠图质量并提高图像融合效果。早期方法受限于特定的拍摄环境,交互式绿幕抠图成本高、速度慢,且图像融合算法丢失前景信息严重,导致融合图像失真,人物颜色虚假。针对这些问题,本文提出改进Deeplabv3+算法和改进PoissonEditing算法,联合视频风格迁移算法,实现视频人物背景替换系统。

       改进Deeplabv3+算法采用编码器与解码器并联结构,通过DCNN生成多维度特征,遵循ASPP规则增加感受视野,结合边缘校正通道算法对分割的人体图像进行后处理。改进后的算法前端采用空洞卷积获取浅层低级特征,后端采用vgg-获取深层高级特征信息,输出尺寸为4的通道特征用于图像分割。

       系统整合部分包含完整源码、环境部署视频教程、数据集和自定义UI界面。通过参考博客《基于改进Deeplabv3+的视频人像背景替换系统(源码&教程)》,实现视频人物背景替换系统的集成与优化。

       参考文献提供相关领域的综述与讨论,涉及深度学习、图像处理、图像分割、图像抠图算法等多个方面,为系统设计提供理论基础与实践经验。

必知必会的VGG网络(含代码)

       牛津大学的视觉几何组设计的VGGNet,一种经典卷积神经网络架构,曾在年ILSVRC分类任务中获得第二名。现今,VGG依然广泛应用于图像识别、语音识别、机器翻译、机器人等领域。VGG包含层(VGG-)和层(VGG-),结构相似,由个卷积层和3个全连接层组成。与之前网络相比,VGG采用3*3卷积核替代7x7卷积核,2*3卷积核替代5*5卷积核,以减少参数,提升深度。

       VGG-的结构图显示,包含conv(卷积层)、pool(池化层)和最后三个fc(全连接层)。VGG通过减少参数量,使得网络结构更加紧凑,从而提升模型的性能。

       VGG-采用五组卷积与三个全连接层,最后使用Softmax进行分类。每个卷积层的参数量通过公式计算得出。特征图计算公式为输出图像大小(O)等于(输入图像大小(I)+2*填充(P)-卷积核大小(K))/步长(S)+1。

       VGG-的代码实现可以通过构建一个Layer类,通过循环添加每个层的顺序执行来实现。具体代码可在关注公众号CV算法恩仇录后,回复VGG源码获取。

       了解更多关于VGG的细节,请参阅相关链接:《VGG网络细节》 shimo.im/docs/dPkpKKErv...、《VGG网络》 blog.csdn.net/weixin_...

       深入理解VGG,可参考《一文读懂VGG》/s/vWuGW4iMD1MjVDZVCqH_FA。

VGGish源码学习

       深入研究VGGish源码,该模型在模态视频分析领域颇为流行,尤其在生成语音部分的embedding特征向量方面。本文旨在基于官方源码进行学习。

       VGGish的代码库结构简洁,仅包含几个.py文件。文件大体功能明确,下文将结合具体代码进行详述。在开始之前,需要预先下载两个预训练文件,与.py文件放在同一目录。

       VGGish的环境安装过程简便,对依赖包的版本要求宽松。只需依次执行安装命令,确保环境配置无误。运行vggish_smoke_test.py脚本,如显示"Looks Good To Me"则表明环境已搭建完成。

       着手VGGish模型的拆解,以vggish_inference_demo.py中的main函数为起点,分为两大部分:数据准备与前向推理获得Embedding特征及特征后处理。

       在数据准备阶段,首先确认输入是否为.wav文件,若非则自行生成。接着,使用vggish_input.py模块将输入数据调整为适用于模型的batch格式。假设输入音频长1分秒,采样频率为.1kHz,读取的wav_data为(,)的一维数组(若为双声道,则调整为单声道)。

       进入前向推理阶段,初始化特征处理对象pproc及记录器对象writer。通过vggish_slim.py模块构建VGG模型,并加载预训练权重。前向推理生成维的embedding特征向量。值得注意的是,输入数据为[num_samples, , ]的三维数据,在推理过程中会增加一维[num_samples,num_frames,num_bins,1],最终经过卷积层提取特征,FC层压缩,得到的embedding_batch为[num_samples,]。

       后处理环节中,应用PCA(主成分分析)对embedding特征进行调整。这一步骤旨在与YouTube-8M项目兼容,后者已发布用于数百万YouTube视频的PCA/whitened/quantized格式的音频和视觉嵌入。不过,若无需使用官方发布的AudioSet嵌入,则可直接使用网络输出的原始嵌入,无需进行PCA操作。

       本文旨在为读者提供深入理解VGGish源码的路径,通过详述模型的构建、安装与应用过程,旨在促进对模态视频分析技术的深入学习与应用。

SSD 分析(一)

       研究论文《SSD: Single Shot MultiBox Detector》深入解析了SSD网络的训练过程,主要涉及从源码weiliu/caffe出发。首先,通过命令行生成网络结构文件train.prototxt、test.prototxt以及solver.prototxt,执行名为VGG_VOC_SSD_X.sh的shell脚本启动训练。

       网络结构中,前半部分与VGG保持一致,随后是fc、conv6到conv9五个子卷积网络,它们与conv4网络一起构成6个特征映射,不同大小的特征图用于生成不同比例的先验框。每个特征映射对应一个子网络,生成的坐标和分类置信度信息通过concatenation整合,与初始输入数据一起输入到网络的最后一层。

       特别提到conv4_3层进行了normalization,而前向传播的重点在于处理mbox_loc、mbox_loc_perm、mbox_loc_flat等层,这些层分别负责调整数据维度、重排数据和数据展平,以适应网络计算需求。mbox_priorbox层生成基于输入尺寸的先验框,以及根据特征图尺寸调整的坐标和方差信息。

       Concat层将所有特征映射的预测数据连接起来,形成最终的输出。例如,conv4_3_norm层对输入进行归一化,AnnotatedData层从LMDB中获取训练数据,包括预处理过的和对应的标注。源码中,通过内部线程实现按批加载数据并进行预处理,如调整图像尺寸、添加噪声、生成Sample Box和处理GT box坐标。

       在MultiBoxLoss层,计算正负例的分类和坐标损失,利用softmax和SmoothL1Loss层来评估预测和真实标签的差异。最终的损失函数综合了所有样本的分类和坐标误差,为网络的训练提供反馈。

文章所属分类:热点频道,点击进入>>