【7450显卡驱动 源码】【jfinal ace 源码】【mpandroidchart 源码分析】grafana 告警源码_grafana告警原理

2025-01-20 00:16:40 来源:易语言聊天室源码 分类:焦点

1.资深用户强烈推荐最优秀的告告“中文”开源时序BI平台Grafana
2.Prometheus普罗米修斯+Grafana部署企业级监控之 规则(rule)配置及报警 (三)
3.图文结合丨Prometheus+Grafana+GreatSQL性能监控系统搭建指南(下)
4.在家庭私有云上实现 K8S 部署 prometheus 和 grafana 并打通钉钉告警
5.基于Prometheus + Grafana搭建IT监控报警最佳实践(2)
6.关于grafana监控告警的技术探索

grafana 告警源码_grafana告警原理

资深用户强烈推荐最优秀的“中文”开源时序BI平台Grafana

       资深用户倾情推荐:Grafana——中文版开源时序BI平台的佼佼者

       作为Grafana的长期用户,从早期的警源4.x到如今的9.3版本,Grafana的原理成长轨迹清晰可见。尤其是告告在年月日发布的9.3版本中,我们迎来了期待已久的警源中文包,使得Grafana更加亲民。原理7450显卡驱动 源码尽管界面汉化尚未完善,告告但瑕不掩瑜,警源Grafana的原理优秀特性依旧令人瞩目。

       Grafana的告告核心在于其时序BI功能,起源于商业智能领域,警源尤其在IT运维领域大放异彩。原理其dashboard设计灵活,告告每个panel可独立配置,警源展示趋势图和阈值预警,原理能轻松处理大规模数据,如一年的数据加载不在话下。

       Grafana的强大还体现在其丰富的可视化插件库,超过种插件涵盖了趋势图、柱状图等多样化图表类型,为数据可视化提供了广阔天地。数据源插件更是覆盖了众多主流数据库,几乎能满足各种数据需求。

       此外,Grafana的告警功能强大,源自Prometheus的整合使其在告警管理上表现出色。其强大的机器学习模块,虽然目前预测算法还需改进,但已经展示了在时序分析领域的深度挖掘。

       对于资深用户而言,Grafana的隐秘功能也是亮点,如支持异常监测和预测,以及Annotations和Stateline等特性,使其在时序BI领域独树一帜。清华的IoTDB等项目都选择集成Grafana,足以证明其在业界的地位。

       总结来说,如果你在寻找一个功能强大、适应性强的时序BI平台,Grafana绝对值得尝试,尤其是中文版的发布,使得它更加易于中国用户使用。现在就是jfinal ace 源码加入Grafana大家庭的好时机,不要错过这个机遇哦。

Prometheus普罗米修斯+Grafana部署企业级监控之 规则(rule)配置及报警 (三)

       前面已经完成了prometheus、node_exporter、alertmanager和grafana的部署,并且对PromQL进行了介绍,并对metrics进行了查询演示。

       本文将配置各项规则,以实现记录和告警功能。

       prometheus的规则分为记录规则和告警规则,rule_files主要用于配置rules文件,支持多个文件和文件目录。

       1.1 当前配置:1.2 记录规则配置:

       记录规则可以预先计算常用或计算量大的表达式,并将结果保存为一组新的时间序列。这样,查询预先计算的结果通常比每次需要原始表达式都要快得多,这对于仪表板非常有用,因为仪表板每次刷新时都需要重复查询相同的表达式。

       记录和告警规则存在于规则组中。组中的规则以规则的时间间隔顺序运行。记录和告警规则的名称必须是有效的度量标准名称。

       注意:冒号是为用户定义的记录规则保留的,不应该被exporter使用。

       1.3 告警规则配置:

       告警规则可以基于PromQL表达式定义告警条件,并将有关激发告警的通知发送到外部服务。只要告警表达式在给定的时间点产生一个或多个向量元素,告警就被视为对这些元素的标签集有效。

       告警规则在Prometheus中的配置方式与记录规则相同。

       1.4 将规则文件加入配置:

       访问prometheus页面,选择Status → Rules,可以看到上面配置的规则已经生效,状态是OK,说明规则正常。

       二、告警测试

       规则配置完成之后,可以进行告警测试,进而修改规则,最终达到想要的监控告警效果。

       2.1 邮件告警配置:

       2.1.1 测试节点down:

       这里选择grafana节点.0.0.,关闭其上的node_exporter,模拟宕机。

       访问prometheus页面,选择Status → Targets,mpandroidchart 源码分析访问alertmanager页面,查看当前存在的告警,等待5分钟,查看邮件,重启node_exporter,模拟机器重启,访问prometheus页面,选择Status → Targets,收到恢复邮件,可以看到,整个邮件告警正常,测试节点down完成。

       2.2 配置钉钉告警:

       仅仅是邮件告警还不够,重要信息应由钉钉告警。

       2.2.1 安装prometheus-webhook-dingtalk插件并设置配置文件:

       config.yml

       ding.tmpl

       编辑systemd文件管理prometheus-webhook-dingtalk

       浏览器访问hostip:/ui 看到如下截图则配置成功

       2.2.2 修改alertmanager配置文件:

       alertmanager.yml

       收到恢复警告,因为前面配置文件里设置了send_resolved: true,如果设置false则不会收到警告

       至此,钉钉告警配置完毕

       2.3 配置企业微信告警:

       修改alertmanager.yml文件,配置报警信息,alertmanager.yml内容如下:

       wechat.tmpl

图文结合丨Prometheus+Grafana+GreatSQL性能监控系统搭建指南(下)

       在本文中,我们将继续探讨如何在GreatSQL 8.0.-环境中利用Grafana和AlertManager构建性能监控系统,特别是在上篇指南的基础上,深入讲解Grafana的邮件告警和钉钉告警功能的配置。

       Grafana的邮件告警配置

       首先,启用QQ邮箱的SMTP服务,生成授权码并修改Grafana的邮箱设置,确保邮件服务能正常工作。登录Grafana后,创建邮件告警规则,比如监测mysql_up值,当值低于1时发送邮件通知。在设置中,可以自定义名称、表达式和通知选项,如延迟时间、邮件地址等。

        添加告警规则

       创建规则时,选择合适的警报名称,设置表达式,如mysql_up <= 0。

       配置触发条件,选择last(),国外rat 源码表示检测最新数据,如果该值小于1,则触发告警。

       测试告警,通过模拟GreatSQL宕机,确认邮件是否正常发送。

       Grafana的钉钉告警

       虽然之前文章已提及使用AlertManager的钉钉告警,这里我们介绍如何在Grafana直接配置。首先,需创建钉钉企业应用机器人,并将其Webhook添加到Grafana的联络点。

        AlertManager的邮件告警

       AlertManager的邮件告警配置涉及alertmanager.yml文件,其中包含全局配置、分发策略和接收者信息。设置完成后,模拟GreatSQL异常,验证邮件告警功能。

       邮件模板可以自定义,通过新建email.tmpl文件进行美化,确保信息清晰易读。

       总结与GreatSQL

       GreatSQL作为一款开源数据库,适用于金融级应用,提供高性能和高可靠性。通过本文,您已经掌握了如何在该环境中搭建全面的性能监控系统,包括Grafana的告警通知功能。现在就动手实践,提升数据库监控效率吧!

       更多详情可在GreatSQL社区获取,包括交流群组和资源链接。

在家庭私有云上实现 K8S 部署 prometheus 和 grafana 并打通钉钉告警

       在家庭私有云上,通过Kubernetes (K8s) 部署Prometheus和Grafana,并实现与钉钉告警的集成,是一个实用且必要的步骤。Prometheus作为监控系统,旨在收集并分析应用程序性能数据,适用于各种环境,包括单集群或跨集群。它提供了一个直观的方式来监控和管理设备运行,尤其对资源老旧的家庭私有云来说,监控至关重要。

       首先,activemq 源码解析确保K8s环境中存在命名空间,然后在master节点上创建包含NFS映射的yaml文件,如prometheus.deploy.yaml和grafana-deployment.yaml,以便数据持久化。通过kubectl命令部署Prometheus和Grafana,成功后,可以通过指定的端口访问它们的界面。

       安装完成后,导入Grafana的K8s监控模板,或直接下载官方模板导入,以监控K8s的运行状态。接下来,通过yaml文件dingtalk.yaml,将告警连接到钉钉,配置多个告警通道以满足个人需求。

       最后,执行alertmanager.yaml的部署,确保alertmanager安装成功。通过故意触发告警,验证钉钉告警功能是否正常工作。完整的部署过程依赖于上述yaml文件的编写和执行。

       以下是这些文件的列表,它们共同构建了家庭私有云上K8s环境下的Prometheus、Grafana和告警集成:

       1. prometheus.configmap.yaml

       2. prometheus_rule.yaml

       3. prometheus-rbac.yaml

       4. prometheus.deploy.yaml

       5. kube-state-metrics-deploy.yaml

       6. prometheus-node-exporter.yaml

       7. grafana-svc.yaml

       8. grafana-deployment.yaml

       9. alertmanager_configmap.yaml

       . alertmanager.yaml

       . dingtalk.yaml

       通过这些步骤,家庭私有云上的设备监控与告警管理得到了全面的提升。

基于Prometheus + Grafana搭建IT监控报警最佳实践(2)

       见字如面,大家好,我是小斐。延续前文,本文将深入探讨Prometheus和Grafana的监控体系。

       首先,我们需要打开Prometheus和Grafana进行操作,访问地址分别为:...:/ 和 ...:/。

       以node_exporter数据采集器为例,先确保其已安装于需要监控的主机。若要获取...主机的状态数据,需在该主机安装node_exporter采集器。

       在prometheus.yml中添加需要抓取的目标源信息,具体操作为:在scrape_configs下添加job_name,指定静态目标,添加...:目标。

       配置文件配置完成后,由于是静态的,需要重新加载配置文件,重启Prometheus以生效。

       在targets中查看是否已抓取到目标,根据上图可见,...的主机节点数据已抓取到。在Prometheus中验证数据正确性,点击http://...:/metrics 可查看抓取的所有数据。

       查看数据信息,输入node_memory_MemTotal_bytes查询该主机内存数据是否正确,可以看到G总内存,与我本机内存相符,说明数据正确。

       至此,我们可以确定数据抓取是成功的。

       数据生成大屏数据UI,展示放在Grafana中,打开Grafana:http://...:/,点击数据源:关联Prometheus数据源。

       输入Prometheus的地址:http://...:,下载Grafana的面板,json模版可在Grafana官网模版库中找到。在此,我选择了一个模版,具体链接为:Linux主机详情 | Grafana Labs。

       添加模版:点击import,导入下载下来的json文件。

       或者根据ID来加载。如果对面板数据和展示的风格不适用,可单独编辑变量和数据查询语句,关于Grafana的变量和数据查询语句后续单独开篇说明,在此只采用通用的模版展示数据。

       关于SNMP数据采集,我们可以通过SNMP协议来监控交换机、路由器等网络硬件设备。在一台Linux主机上,我们可以使用snmpwalk命令来访问设备通过SNMP协议暴露的数据。

       简单查看后,我们需要长期监控,这个时候就要借助SNMP Exporter这个工具了。SNMP Exporter是Prometheus开源的一个支持SNMP协议的采集器。

       下载docker image使用如下命令,使用中请切换对应的版本。如果使用二进制文件部署,下载地址如下。

       对于SNMP Exporter的使用来说,配置文件比较重要,配置文件中根据硬件的MIB文件生成了OID的映射关系。以Cisco交换机为例,在官方GitHub上下载最新的snmp.yml文件。

       关于采集的监控项是在walk字段下,如果要新增监控项,写在walk项下。我新增了交换机的CPU和内存信息。

       在Linux系统中使用Docker来运行SNMP Exporter可以使用如下脚本。

       在Linux系统部署二进制文件,使用系统的Systemd来控制服务启停,系统服务文件可以这么写。该脚本源自官方提供的脚本,相比于官方脚本增加了SNMP Exporter运行端口的指定。

       运行好以后,我们可以访问http://localhost:来查看启动的SNMP Exporter,页面上会显示Target、Module、Submit、Config这几个选项和按钮。

       在Target中填写交换机的地址,Module里选择对应的模块,然后点击Submit,这样可以查到对应的监控指标,来验证采集是否成功。

       target可以填写需要采集的交换机IP,模块就是snmp.yml文件中命名的模块。

       点击Config会显示当前snmp.yml的配置内容。

       如果上面验证没有问题,那么我们就可以配置Prometheus进行采集了。

       配置好Prometheus以后启动Prometheus服务,就可以查到Cisco交换机的监控信息了。

       接下来就Prometheus配置告警规则,Grafana进行画图了。这些操作和其他组件并无区别,就不再赘述。

       关于手动生成snmp.yml配置文件,当官方配置里没有支持某些设备时,我们需要通过MIB文件来自己生成配置文件。

       以华为交换机为例,在单独的CentOS7.9的一台虚拟机中部署snmp_exporter,在这里我以源码编译部署。

       在此我贴出generator.yml文件的模版:模块中,if_mib是指思科模块提供公共模块,HZHUAWEI是我自定义的模块名,根据walk下的OID和变量下的mib库文件路径生成snmp.yml配置文件,然后根据snmp.yml配置文件采集交换机信息。

       generator.yml文件格式说明:参考官网。

       这次我贴一份比较完整的snmpv3版本的模版:参考网络上,后续我内部的完整模版贴出来,形成最佳实践。

       主要的消耗时间就是想清楚需要采集的交换机监控指标信息,并到官网找到OID,贴到generator.yml文件中,最后执行./generator generate命令遍历OID形成snmp.yml配置文件,启动snmp_exporter时指定新形成的snmp.yml文件路径。

       启动后在浏览器中,打开http://...5:/。

       在此需要说明下,交换机需要开启snmp使能。如内部交换机比较多,可采用python或者ansible批量部署snmp使能,python这块可学习下@弈心 @朱嘉盛老哥的教程,上手快并通俗易懂,ansible后续我会单独出一套针对华为设备的教程,可关注下。

       一般情况下,交换机都是有多台,甚至几百上千台,在如此多的设备需要监控采集数据,需要指定不同模块和不同配置文件进行加载采集的,下面简单介绍下多机器部署采集。

       编辑prometheus.yml文件,snmp_device.yml的内容参照如下格式即可。我在下面的示例中添加了architecture与model等变量,这些变量Prometheus获取目标信息时,会作为目标的标签与目标绑定。

       重启服务器或重加载配置文件即可,后续贴出我的实际配置文件。

       此篇到此结束,下篇重点说明配置文件细节和我目前实践的配置文件讲解。

关于grafana监控告警的技术探索

       在深入探索grafana监控告警技术之前,让我们先了解一下grafana与prometheus是什么。

       对于运行中的复杂系统,出现问题时很难立即定位原因。因此,通过在关键点部署监控,利用获取的数据指导问题排查变得尤为重要。类比于汽车中的仪表盘,grafana为系统监控提供了可视化的界面,而prometheus则充当了时序数据库的角色,存储系统的监控数据。

       实际操作中,使用grafana建立告警规则的过程如下:

       第一步:选择监控数据源(prometheus)、监控时间范围(前分钟至当前时间)、并使用prometheus查询语言进行数据查询。

       第二步:设置报警条件,例如取最后的数据点、设置阈值(如小于0.6)等。

       第三步:设定告警评估时间与间隔时间,例如告警间隔设置最低为秒,评估时间可设置为0秒至任意时间。

       通过测试不同监控规则,发现监控状态变化基本同步。但随着监控数量增加,报警反应时间会出现延时。对比grafana与prometheus,发现prometheus的报警反应时间更符合设定时间。

       grafana在压力测试方面存在局限,大量监控会导致服务器CPU负载过高。同时,告警通知方式存在延迟,即使设置短时间间隔,邮件发送时间仍然与设定时间有所差异。

Grafana部署与Zabbix集成,搭建开源IT监控平台

       部署一套开源的IT监控系统,实现监控、可视化、告警功能,利用Grafana与Zabbix的集成,满足日常网络、运维、IT支持的需求。Zabbix负责数据收集与告警配置,Grafana则提供美观的图形展示。首先,安装Zabbix,参考之前的文章进行部署。接着,利用纯净Centos8操作系统,安装Grafana版本为.2.1,可通过yum或下载rpm包实现。Grafana默认使用sqlite数据库,并配置端口以访问网页服务。考虑稳定性,本文建议将sqlite数据库转换为mysql数据库,并将Grafana数据库与Zabbix数据库整合,简化维护。完成数据库设置后,使用Grafana前端进行基本配置,包括语言、仪表板创建等。为了实现Zabbix数据的集成,需要安装相应的插件,支持从Zabbix读取监控指标。在Grafana中添加仪表板,选择数据源为Zabbix,并通过创建多个可视化面板监控主机的内存、CPU、网络流量等指标。若遇到端口限制,可使用nginx代理Grafana服务,实现端口访问。至此,Grafana与Zabbix的集成监控平台搭建完成,提供高效、直观的数据可视化与告警功能,满足日常运维需求。

更多资讯请点击:焦点

热门资讯

esp8266 Dcloud源码

2025-01-19 23:322042人浏览

损友圈小游戏源码_损友圈攻略

2025-01-19 23:11483人浏览

也門胡塞武裝稱襲擊3艘美國軍艦

2025-01-19 22:352311人浏览

推荐资讯

法國極右翼黨派領導人勒龐因挪用公款案出庭受審

當地時間9月30日,法國極右翼黨派「國民聯盟」領導人勒龐因挪用公款案出庭受審。由於該案可能影響法國政局未來走向,因而受到外界關注。勒龐當天下午抵達巴黎刑事法庭,面對現場記者堅稱自己「沒有違反歐洲議會的

彩虹代刷4.1源码_彩虹代刷4.1源码多少钱

1.qq与360之争真相2.什么Android 安卓手机好如何选择安卓手机系统qq与360之争真相 马化腾:不采取措施QQå

java修改器源码_java 修改器

1.怪物猎人世界修改器怎么用2.gguardian修改器怎么用如何下载怪物猎人世界修改器怎么用 怪物猎人世界修改器怎么用在玩怪物猎人的时候我们有时可能需要修改角色信息,背包和道具箱,那么怪物猎人世