1.JavaScript?正数左移编写枚举的最有效方法分享
2.C#移ä½è¿ç®
3.算术移位和逻辑移位详解
4.补码怎么算
JavaScript?编写枚举的最有效方法分享
在JavaScript中,我们常常需要对一些固定选项进行标记。源码移位例如,位正我们需要统计员工的数源技术栈,目前我们需要标记的码左技术有 CSS、JavaScript、正数左移activity源码HTML、源码移位WebGL。位正以往,数源我们可能会这样写枚举:
const SKILLS = { CSS: 1 ,码左 JS: 2, HTML: 3, WEB_GL: 4}
最近,我在学习Vue源码时,正数左移发现了一个高效使用枚举的源码移位技巧。这种方法可以让我们更高效地管理这些标记。位正我们可以这样定义枚举:
const SKILLS = { CSS: 1 ,数源 JS: 1 1, HTML: 1 2, WEB_GL: 1 3}
左移运算符(<<)将第一个操作数左移指定位数。向左移动的码左多余位被丢弃。零位从右侧移入。例如:二进制的 1 是 ,左移一位是 ,即十进制的 2。如果我们将其移动两位,vs mfc 源码它将变为 ,即十进制的 4。如果我们将其移动三位,它将变为 ,即十进制的 8。如果我们将其移动 N 位,它将变为 2^N在十进制。
按照上面的方法定义好枚举后,我们可以这样使用:
const SKILLS = { CSS: 1 , JS: 1 1, HTML: 1 2, WEB_GL: 1 3}
// 使用这个值来存储用户的技能栈let skills = 0
// 添加用户的技能function addSkill(skill) { skills = skills | skill}
addSkill(SKILLS.CSS)
addSkill(SKILLS.JS)
// 如果这个值不为 0,表示用户掌握了该技术console.log('他是否掌握了CSS', (skills & SKILLS.CSS) !== 0)
console.log('他是否掌握了JavaScript', (skills & SKILLS.JS) !== 0)
console.log('他是否掌握了WebGL', (skills & SKILLS.WEB_GL) !== 0)
这里需要注意,| 是按位或运算符,它在每个操作数的对应位为 1 的每个位位置返回 1。例如:const a = 5; // const b = 3; // console.log(a | b); // // 预期输出:7
如何理解这段代码?在 JavaScript 中,整数存储在 4 个字节中,即 位。第一个代表正负,后面的 位代表数字。当我们用二进制表示 1, 1 2 时,它们看起来像这样:我们定义的blowfish加密源码枚举变量只有一个二进制格式的1,并且占据不同的位置。当我们向技能添加枚举选项时,我们使用 skills | skill。假设现在我们需要添加的技能是 SKILLS.CSS,那么在执行过程中,就是:
我们可以发现,在技能中,SKILLS.CSS 对应的位置会变成1。反之,那么我们可以通过查看 skills & SKILLS.CSS 的结果是否为 0 来判断技能中是否存在 SKILLS.CSS。顺便说一句,这里我们也可以发现这个技巧有个缺点,就是枚举项不能超过 个。
我们为什么要使用这个技巧?答案很简单,这样的代码运行起来更高效。CPU 中有直接对应位操作的指令,因此效率更高。我们也可以做一个性能测试。如果我们不使用按位运算,linuxcnc源码下载而是使用传统的方法(数组或映射)来实现,那么代码如下。
Array 方法:
const SKILLS = { CSS: 1 , JS: 1 1, HTML: 1 2, WEB_GL: 1 3}
// 使用数组来存储用户的技能栈let skills = []
function addSkill(skill) { if (!skills.includes(skill)) { // 避免重复存储 skills.push(skill) }}
addSkill(SKILLS.CSS)
addSkill(SKILLS.JS)
skills.includes(SKILLS.CSS)
skills.includes(SKILLS.JS)
skills.includes(SKILLS.WEB_GL)
Map 方法:
const SKILLS = { CSS: 1 , JS: 1 1, HTML: 1 2, WEB_GL: 1 3}
// 使用映射来存储用户的技能栈let skills = { }
function addSkill(skill) { if (!skills[skill]) { skills[skill] = true }}
addSkill(SKILLS.CSS)
addSkill(SKILLS.JS)
skills[SKILLS.CSS]
skills[SKILLS.JS]
skills[SKILLS.WEB_GL]
这是 jsbench.me 的性能测试:使用按位枚举,性能明显更高。
C#移ä½è¿ç®
移ä½è¿ç®(shifting operationï¼æ¯C#ä¸ä¸ç§ç¹æ®çè¿ç®ï¼å ¶åçæ¯æ ¹æ®æ°å¼åå¨å¨è®¡ç®æºå åä¸ä»¥äºè¿å¶çæ åï¼è¿è¡å移æè å移è¥å¹²ä½çç®æ³ãæ ¹æ®é¢ç®æ¥çï¼æ 符å·ä½çæ°å移å¨âå·¦âãâå³âæ以ä¸è§å¾ï¼
1ï¼å·¦ç§»ï¼å°æ¯ä¸ªäºè¿å¶çæ°åå¾å·¦è¾¹ç§»å¨è¥å¹²ä½ï¼è¥å¹²ä½ï¼ç¬¦å·â<<âåé¢çæ°åï¼ä¸è¶³ä»¥0è¡¥å ï¼ã
2ï¼å³ç§»ï¼å°æ¯ä¸ªäºè¿å¶çæ°åå¾å³è¾¹ç§»å¨è¥å¹²ä½ï¼è¥å¹²ä½ï¼ç¬¦å·â>>âåé¢çæ°åï¼ä¸è¶³ä»¥æé«ä½çæ°åè¡¥å ï¼ã
ä¸é¢ç»åºå ·ä½ä¾åï¼
ãä¾ã计ç®2<<2å2>>2ï¼
å¨è®¡ç®æºä¸ï¼æ£æ´æ°2çæºç ï¼åç ï¼è¡¥ç ï¼ ï¼å¾å·¦è¾¹æ¯ä¸ªæ°å移å¨2ä½ä¹åï¼æé«ç两ä½æº¢åºï¼ä¸¢å¼ï¼ï¼åå 为符å·ä½ï¼æé«ä½ä¸º0ï¼ï¼å æ¤è¡¥å 两个0ï¼åæ =>8.
åä¹ï¼ å³ç§»å¨2为å»æå³è¾¹ç两个æ°åï¼å¨æé«ä½ä¸æ·»å 两个0ï¼åæ =>0
ãéè¦ç»è®ºã
1ï¼å·¦ç§»åå³ç§»nä½ï¼ç¸å½äºå»æåé¢ååé¢å¯¹åºçè¥å¹²ä½ï¼åè¡¥å ã
2ï¼å½å·¦ç§»å¨æ¯2çæ¶åï¼å¯ä»¥çææ¯æ个æ°Ã2çn次æ¹ï¼åä¹é¤ä»¥2çn次æ¹ã
算术移位和逻辑移位详解
大部分C编译器中,使用移位实现代码比调用乘除法子程序生成的代码效率更高。
整理Java源码时,发现一些位运算操作,移位运算的重要性得以显现。不整理不知,一整理则深感其奥妙。
移位运算,即是将数值向左或向右移动,对于十进制而言,实现放大或缩小十倍的效果;对于二进制而言,则是放大两倍或缩小两倍。
整数乘除法在C/C++中有时会犯错,因此理解移位操作至关重要。
直接移位的python 3 源码数据类型包括:char、short、int、long、unsigned char、unsigned short、unsigned int、unsigned long,而double、float、bool、long double则不能进行移位操作。
对于有符号数据类型,如char、short、int、long,左移时,负数的符号位始终为1,其他位左移,正数所有位左移。右移时,负数取绝对值右移,再取相反数;正数所有位右移。
无符号数据类型,如unsigned char、unsigned short、unsigned int、unsigned long,移位操作使用<< 和 >> 操作符即可。
逻辑移位操作不考虑符号位,移位结果仅为数据位的移动。左移时,低位补0,右移时,高位补0。
算术移位操作则考虑符号位。对于正数,无论左移还是右移,最高位补0。对于负数,左移时高位补1,右移时高位补1。
算术移位中,符号位会跟随整体移动,以保持符号的正确性。例如,正数左移时补0,负数左移时补1。
逻辑移位适用于所有数据类型,而算术移位则需考虑符号位,以保持数值的正确性。
java提供了三种位移运算符:<<(左移)、>>(带符号右移)和>>>(无符号右移)。
移位操作是高效计算的基础,理解其原理有助于提高编程效率。
补码怎么算
1、正数的补码表示:正数的补码 = 原码
负数的补码 = { 原码符号位不变} + { 数值位按位取反后+1}or
= { 原码符号位不变} + { 数值位从右边数第一个1及其右边的0保持不变,左边安位取反}
以十进制整数+和-为例:
+原码 = _b
+补码 = _b
-原码= _b
-补码= _b
2、纯小数的原码:
纯小数的原码如何得到呢?方法有很多,在这里提供一种较为便于笔算的方法。
以0.为例,通过查阅可知其原码为0.___b。
操作方法:
将0. * 2^n 得到X,其中n为预保留的小数点后位数(即认为n为小数之后的小数不重要),X为乘法结果的整数部分。
此处将n取,得
X = d = ___b
即0.的二进制表示在左移了位后为___b,因此可以认为0.d = 0.___b 与查询结果一致。
再实验n取,得
X = d = __b 即 0.d = 0.__b,在忽略位小数之后的位数情况下,计算结果相同。
3、纯小数的补码:
纯小数的补码遵循的规则是:在得到小数的源码后,小数点前1位表示符号,从最低(右)位起,找到第一个“1”照写,之后“见1写0,见0写1”。
以-0.为例,其原码为1.___b
则补码为:
1. ___b
当然在硬件语言如verilog中二进制表示时不可能带有小数点(事实上不知道哪里可以带小数点)。
4、一般带小数的补码
一般来说这种情况下先转为整数运算比较方便
-.为例,经查询其原码为_.___b
笔算过程:
-. * 2^ = - = _____b,其中小数点在右数第位,与查询结果一致。
则其补码为_____b,在此采用 负数的补码 = { 原码符号位不变} + { 数值位按位取反后+1}方法
5、补码得到原码:
方法:符号位不动,幅度值取反+1 or符号位不动,幅度值-1取反
-.补码 = _(.)___b
取反= _(.)___b
+1 = _(.)___b 与查询结果一致
6、补码的拓展:
在运算时必要时要对二进制补码进行数位拓展,此时应将符号位向前拓展。
-5补码 = 4'b = 6'b_
ps.原码的拓展是将符号位提到最前面,然后在拓展位上部0.
-5原码 = 4‘b’ = 6'b_,对其求补码得6'b_,与上文一致。
扩展资料:
计算机中的符号数有三种表示方法,即原码、反码和补码。三种表示方法均有符号位和数值位两部分,符号位都是用0表示“正”,用1表示“负”,而数值位,三种表示方法各不相同。
在计算机系统中,数值一律用补码来表示和存储。原因在于,使用补码,可以将符号位和数值域统一处理;同时,加法和减法也可以统一处理。
此外,补码与原码相互转换,其运算过程是相同的,不需要额外的硬件电路。
2025-01-19 23:401750人浏览
2025-01-19 23:24397人浏览
2025-01-19 22:571298人浏览
2025-01-19 22:472944人浏览
2025-01-19 22:42376人浏览
2025-01-19 22:201908人浏览
中国消费者报北京讯记者万晓东)为全面加强电动自行车安全监管,切实保障人民群众生命财产安全,近期,北京市延庆区市场监管局采取四项措施做好电动自行车全链条整治工作。开展交叉互访,针对拆改装电动自行车及蓄电
1.UGUI源码导读2.(五) Geometries3.cè¯è¨ç¼å路线4.TinkerPop Gremlin Traversal 源码解析5.DirectX åºç¡6.创