皮皮网

【影视切片源码】【韩国漫画 源码】【期货背离源码】recv源码

来源:星期派源码 时间:2024-11-23 06:12:56

1.ZMQ源码详细解析 之 进程内通信流程
2.TCP之深入浅出send&recv
3.几个代码伪装成高级黑客
4.驱动I2C驱动分析(四)-关键API解析

recv源码

ZMQ源码详细解析 之 进程内通信流程

       ZMQ进程内通信流程解析

       ZMQ的源码核心进程内通信原理相当直接,它利用线程间的源码两个队列(我称为pipe)进行消息交换。每个线程通过一个队列发送消息,源码从另一个队列接收。源码ZMQ负责将pipe绑定到对应线程,源码并在send和recv操作中通过pipe进行数据传输,源码影视切片源码非常简单。源码

       我们通过一个示例程序来理解源码的源码工作流程。程序首先创建一个简单的源码hello world程序,加上sleep是源码为了便于分析流程。程序从`zmq_ctx_new()`开始,源码这个函数创建了一个上下文(context),源码这是源码ZMQ操作的起点。

       在创建socket时,源码如`zmq_socket(context,源码 ZMQ_REP)`,实际调用了`ctx->create_socket`,socket类型决定了其特性。rep_t是基于router_t的特化版本,主要通过限制router_t的某些功能来实现响应特性。socket的创建涉及到诸如endpoint、slot和 mailbox等概念,它们在多线程环境中协同工作。

       进程内通信的建立通过`zmq_bind(responder, "inproc://hello")`来实现,这个端点被注册到上下文的endpoint集合中,便于其他socket找到通信通道。zmq的优化主要集中在关键路径上,避免对一次性操作过度优化。

       接下来的recv函数是关键,即使没有连接,它也会尝试接收消息。韩国漫画 源码`xrecv`函数根据进程状态可能阻塞或返回EAGAIN。recv过程涉及`msg_t`消息的处理,以及与`signaler`和`mailbox`的交互,这些组件构成了无锁通信的核心。

       发送端通过`connect`函数建立连接,创建连接通道,并将pipe关联到socket。这个过程涉及无锁队列的管理,如ypipe_t和pipe_t,以及如何均衡发送和接收。

       总结来说,ZMQ进程内通信的核心是通过管道、队列和事件驱动机制,实现了线程间的数据交换。随着对ZMQ源码的深入,会更深入理解这些基础组件的设计和工作原理。

TCP之深入浅出send&recv

       接触过网络开发的人,了解上层应用如何使用send函数发送数据以及recv接收数据。但是,send和recv的实现原理是什么?本文将简单介绍TCP中发送缓冲区和接收缓冲区的作用,并讲解Linux系统下TCP发送和接收数据的具体实现。

       缓冲区在数据传输中起着临时缓存的作用。发送端将数据拷贝到发送缓冲区后,立即返回应用层执行其他操作,而接收端则将网络中的数据拷贝到缓冲区等待应用层读取。

       发送缓冲区在应用层调用send()发送数据时,数据会被拷贝到socket的内核发送缓冲区。send()函数在应用层返回时,并不一定意味着数据已经发送到对端,期货背离源码而是数据已放入socket的内核发送缓冲区。

       Linux内核提供两种方式查看tcp缓冲区大小:通过/etc/sysctl.ronf下的net.ipv4.tcp_wmem值或命令'cat /proc/sys/net/ipv4/tcp_wmem'。以笔者服务器为例,发送缓冲区大小为、、。

       通过程序可以修改当前tcp socket的发送缓冲区大小,只影响特定的socket。

       接收缓冲区用于缓存网络上来的数据,直至应用进程读取为止。当应用进程未读取数据且接收缓冲区已满时,收端会通知发端接收窗口关闭(win=0),实现TCP的流量控制。

       接收缓冲区大小可以通过查看/etc/sysctl.ronf下的net.ipv4.tcp_rmem值或命令'cat /proc/sys/net/ipv4/tcp_rmem'获取。同样,可以通过修改程序大小修改接收缓冲区,仅影响当前特定socket。

       TCP的四层模型包括应用层、传输层、网络层和数据链路层。应用层创建socket并建立连接后,可以调用send函数发送数据。传输层处理数据,以TCP为例,其主要功能包括流量控制、拥塞控制等。

       当发送数据时,数据会从应用层、传输层、监控组态源码网络层、数据链路层依次传递。上图为send函数源码调用逻辑图,若对源码感兴趣,可查阅net/tcp.c获取详细实现。

       recv函数实现类似,从数据链路层接收数据帧,通过网卡驱动处理后,进入内核进行协议层处理,最终将数据放入socket的接收缓冲区。

       在实际应用中,非阻塞send时,发送端可能发送了大量数据,但实际只发送了部分,缓冲区中仍有大量数据未发送。接收端recv获取数据时,可能只收到部分数据。这种情况下,应用层需要正确处理超时、断开连接等情况。

       总结来说,TCP的send和recv函数分别在应用层和传输层实现数据的发送和接收,通过内核的缓冲区控制数据的流动。正确理解这些原理对于网络编程至关重要。

几个代码伪装成高级黑客

       1. Introduction

       作为计算机科学领域中最为著名的职业之一,黑客在当前的网络时代中有着不可忽视的作用。高级黑客更是其中的佼佼者,他们不仅具备了深厚的计算机技术知识,更能够使用各种技术手段,.net漫画源码无中生有、突破困境、扰乱秩序等,令人望尘莫及。本文将会介绍一些简单的代码,让大家了解如何通过伪装成高级黑客,获得与众不同、且备受他人崇拜的感受。

       2. 建立IP连接

       在Python中,我们可以使用socket库来建立一个IP连接,并实现从目标服务器上获取数据的操作,下面是一段伪装成高级黑客的代码:

       ```python

       import socket

       def conn(IP, Port):

        client = socket.socket(socket.AF_INET,socket.SOCK_STREAM)

        client.connect((IP,Port))

        while True:

        data = client.recv()

        print (\'receive:\', data.decode()) #将获取到的数据进行解码

        client.send(\'ACK!\'.encode()) #发送一个确认信息

       if __name__ == \'__main__\':

        conn(\'.0.0.1\', )

       ```

       通过以上代码,我们可以连接到指定的服务器和对应的端口,获取到服务器发送的数据,并且能够对服务器返回一份确认信息,同时也向别人表现出伪装成高级黑客,游刃有余的状态。

       3. 文件域修改

       文件域修改是黑客行业中非常重要的一环,它可以改变一个可编辑文件中特定寻址位置的值。这个方法可以被用来对各种各样的文件(如二进制文件)进行操控。下列的Python代码可以让你的伪装更加漂亮:

       ```python

       import struct

       import os

       def change_value(file_path, offset, value):

        with open(file_path, \"r+b\") as f:

        f.seek(offset)

        f.write(struct.pack(\'i\', value))

       if __name__ == \"__main__\":

        file_path = \"/etc/hosts\"

        offset =

        value =

        change_value(file_path, offset, value)

       ```

       以上代码用到了struct结构体和os模块,使用`r+`文件模式打开指定的文件,通过file.seek()方法改变寻址位置,最后使用`struct.pack()`方法打包整数,并使用write()方法写入文件中。当写入完成后,文件中的值也随之更改。这时,你已成为了一个擅长黑客技术的“高手”。

       4. 网络嗅探

       网络嗅探是指在一个网络中抓取和记录经过网络的信息,并对这些信息进行分析。在现代网络安全领域中,网络嗅探被广泛地应用于网络审计和攻击检测。下面是一个伪装成高级黑客的Python代码示例,可以用于嗅探TCP流量包:

       ```python

       import socket

       def sniffTCP(port):

        try:

        sock = socket.socket(socket.AF_INET, socket.SOCK_RAW, socket.IPPROTO_TCP)

        sock.setsockopt(socket.IPPROTO_IP, socket.IP_HDRINCL, 1)

        sock.bind((\'.0.0.1\', port))

        while True:

        packet = sock.recvfrom()[0]

        ip_header = packet[0:]

        tcp_header = packet[:]

        print(\"TCP Source Port: %d\" % ord(tcp_header[0]))

        except KeyboardInterrupt:

        print(\'Interrupted.\')

       if __name__ == \"__main__\":

        sniffTCP()

       ```

       上述程序使用Python的socket库来监听指定的端口,收集包含TCP流量的数据报,并在控制台输出源端口号。此时,你已经成为一个懂得TCP嗅探技术的黑客了。

       5. 爬取网页信息

       网络爬虫被广泛用于百度和谷歌搜索引擎中,通过分析网页的源代码,检查网站的链接,实现数据抓取和分析。下面是一个伪装成高级黑客的Python代码示例,可以用于网页爬取,我们可以把以前熟悉的requests库和xpath技术结合运用。

       ```python

       import requests

       from lxml import html

       def get_info(url):

        page = requests.get(url)

        tree = html.fromstring(page.content)

        title = tree.xpath(\'//title\')[0].text_content()

        print(\'Website Title:\', title)

        links = tree.xpath(\'//a/@href\')

        print(\'Links:\')

        for link in links:

        print(link)

       if __name__ == \'__main__\':

        get_info(\'\')

       ```

       这些代码使用了requests和lxml库,获取页面内容并解析HTML,以提取指定节点的数据,如标题和链接。此时,在码量不大的情况下,你已成为一个懂得网页爬取技术的黑客了。

       结论

       以上提供的伪装成高级黑客的五个应用程序演示了Python的实用性和可扩展性。通过这些例子,我们可以使自己更好的了解Python,更好地思考如何在网络和数据安全方面实现自己所需的操作。同时,我们也可以通过这些代码,感受到黑客的精神和技术的魅力,找寻到自己更好的成长和发展机会。

驱动I2C驱动分析(四)-关键API解析

       在Linux内核源代码中的driver目录下包含一个i2c目录

       i2c-core.c这个文件实现了I2C核心的功能以及/proc/bus/i2c*接口。i2c-dev.c实现了I2C适配器设备文件的功能,每一个I2C适配器都被分配一个设备。通过适配器访设备时的主设备号都为,次设备号为0-。I2c-dev.c并没有针对特定的设备而设计,只是提供了通用的read(),write(),和ioctl()等接口,应用层可以借用这些接口访问挂接在适配器上的I2C设备的存储空间或寄存器,并控制I2C设备的工作方式。

       busses文件夹这个文件中包含了一些I2C总线的驱动,如针对S3C,S3C,S3C等处理器的I2C控制器驱动为i2c-s3c.c. algos文件夹实现了一些I2C总线适配器的algorithm.

       I2C Core

       i2c_new_device用于创建一个新的I2C设备,这个函数将会使用info提供的信息建立一个i2c_client并与第一个参数指向的i2c_adapter绑定。返回的参数是一个i2c_client指针。驱动中可以直接使用i2c_client指针和设备通信了。

       i2c_device_match 函数根据设备和设备驱动程序之间的不同匹配方式,检查它们之间是否存在匹配关系。这个函数通常在 I2C 子系统的设备驱动程序注册过程中使用,以确定哪个驱动程序适用于给定的设备。

       i2c_device_probe 函数执行了 I2C 设备的探测操作。它设置中断信息、处理唤醒功能、设置时钟、关联功耗域,并调用驱动程序的 probe 函数进行设备特定的探测操作。

       i2c_device_remove 函数执行了 I2C 设备的移除操作。它调用驱动程序的 remove 函数,并进行功耗域的分离、唤醒中断的清除以及设备唤醒状态的设置。

       i2c_register_adapter 函数用于注册一个 I2C 适配器。它进行了一系列的完整性检查和初始化操作,并注册适配器设备。然后,注册与适配器相关的设备节点、ACPI 设备和空间处理器。最后,遍历所有的 I2C 驱动程序,并通知它们有新的适配器注册了。

       i2c_add_adapter 函数用于添加一个新的 I2C 适配器。它先尝试从设备树节点中获取适配器的编号,如果成功则使用指定的编号添加适配器。如果没有相关的设备树节点或获取编号失败,函数会在动态范围内分配一个适配器 ID,并将适配器与该 ID 相关联。然后,函数调用 i2c_register_adapter 函数注册适配器,并返回注册函数的返回值。

       i2c_detect_address 函数用于检测指定地址上是否存在 I2C 设备,并执行自定义的设备检测函数。它会进行一系列的检查,包括地址的有效性、地址是否已被占用以及地址上是否存在设备。如果检测成功,函数会调用自定义的检测函数并根据检测结果进行相应的处理,包括创建新的设备实例并添加到驱动程序的客户端列表中。

       i2c_detect 函数根据给定的适配器和驱动程序,通过遍历地址列表并调用i2c_detect_address函数,检测I2C适配器上连接的设备是否存在。

       这段代码是一个用于检测I2C适配器上连接的设备的函数。下面是对代码的详细解释:

       I2C device

       i2c_dev_init执行了一系列操作,包括注册字符设备、创建设备类、注册总线通知器以及绑定已经存在的适配器。它在初始化过程中处理了可能发生的错误,并返回相应的错误码。

       i2cdev_attach_adapter作用是将I2C适配器注册到Linux内核中,以便在系统中使用I2C总线。它会获取一个空闲的struct i2c_dev结构体,然后使用device_create函数创建一个I2C设备,并将其与驱动核心相关联。

       i2cdev_open通过次设备号获取对应的i2c_dev结构体和适配器,然后分配并初始化一个i2c_client结构体,最后将其赋值给文件的私有数据。

       i2cdev_write函数将用户空间的数据复制到内核空间,并使用i2c_master_send函数将数据发送到之前打开的I2C设备中。

       i2cdev_read函数在内核中分配一个缓冲区,使用i2c_master_recv函数从I2C设备中接收数据,并将接收到的数据复制到用户空间。

       i2cdev_ioctl

       i2c_driver

       i2c_register_driver将驱动程序注册到I2C驱动核心,并在注册完成后处理所有已经存在的适配器。注册完成后,驱动核心会调用probe()函数来匹配并初始化所有匹配的但未绑定的设备。

       I2C 传输

       i2c_transfer用于执行I2C传输操作。它首先检查是否支持主控制器,如果支持,则打印调试信息,尝试对适配器进行锁定,然后调用__i2c_transfer函数执行传输操作,并在完成后解锁适配器并返回传输的结果。如果不支持主控制器,则返回不支持的错误码。

       i2c_master_send通过I2C主控制器向从设备发送数据。它构建一个i2c_msg结构,设置消息的地址、标志、长度和缓冲区,并将其传递给i2c_transfer函数执行实际的传输操作。函数的返回值是发送的字节数或错误码,用于指示传输是否成功。

       i2c_master_recv通过I2C主控制器从从设备接收数据。它构建一个i2c_msg结构,设置消息的地址、标志、长度和缓冲区,并将其传递给i2c_transfer函数执行实际的传输操作。函数的返回值是接收的字节数或错误码,用于指示传输是否成功。