1.ONNX一本通:综述&使用&源码分析(持续更新)
2.Flux和Mono的码分常用API源码分析
3.CreateCollection API执行流程_milvus源码解析
4.next.js 源码解析 - API 路由篇
5.ZookeeperApach Curator 框架源码分析:初始化过程(一)Ver 4.3.0
6.openctp通道源码开放二(新浪行情CTPAPI)
ONNX一本通:综述&使用&源码分析(持续更新)
ONNX详解:功能概述、Python API应用与源码解析
ONNX的码分核心功能集中在模型定义、算子操作、码分序列化与反序列化,码分以及模型验证上。码分它主要通过onnx-runtime实现运行时支持,码分混沌游戏源码包括图优化和平台特定的码分算子库。模型转换工具如tf、码分pytorch和mindspore的码分FMK工具包负责各自框架模型至ONNX的转换。ONNX Python API实战
场景一:构建线性回归模型,码分基础操作演示了API的码分使用。
场景二至四:包括为op添加常量参数、码分属性以及控制流(尽管控制流在正式模型中应尽量避免)。码分
场景五和后续:涉及for循环和自定义算子的码分添加,如Cos算子,码分涉及算子定义、添加到算子集、Python实现等步骤。
源码分析
onnx.checker:负责模型和元素的检查,cpp代码中实现具体检查逻辑。
onnx.compose、onnx.defs、onnx.helper等:提供模型构建、算子定义和辅助函数。
onnx.numpy_helper:处理numpy数组与onnx tensor的转换。
onnx.reference:提供Python实现的op推理功能。
onnx.shape_inference:进行模型的形状推断。
onnx.version_converter:处理不同op_set_version的转换。
转换实践
ONNX支持将tf、pytorch和mindspore的模型转换为ONNX格式,同时也有ONNX到TensorRT、MNN和MS-Lite等其他格式的转换选项。总结
ONNX提供了一个统一的IR(中间表示)框架,通过Python API构建模型,u启动盘源码源码支持算子定义的检查和模型的序列化。同时,它利用numpy实现基础算子,便于模型的正确性验证,并支持不同框架模型之间的转换。Flux和Mono的常用API源码分析
Flux是一个响应式流,能够生成零个、一个、多个或无限个元素。Flux的产生元素机制主要体现在Flux.just和Flux.empty两个方法上。Flux.just返回的FluxArray内部存储了一个数组,用来保存1个或多个数据,通过ArraySubscription传递给消费者。Flux.empty则返回了一个FluxEmpty实例,当收到消费者注册信号时,会调用Operators的complete方法,消费者会收到一个complete信号,除此之外没有任何操作。
重复流通过创建一个FluxRepeatPredicate对象实现,这个对象在结束时会重新订阅Publisher,从而产生无限数量的流。doOnSignal方法提供了在框架中不消费数据或转变数据的机制,实际上是操作符FluxPeekFuseable,其peek onNext代码逻辑能大致理解其原理。
Mono表示要么有一个元素,要么产生完成或错误信号的Publisher。其then方法有五个重载版本,实际上创建了一个MonoIgnorePublisher,通过源码可以发现,MonoIgnorePublisher将真正的监听者封装为IgnoreElementsSubscriber,然后将事件源监听。Mono和Flux都有Create方法,用于创建对应的红角鸮源码45源码双生序列,Mono的create方法创建了MonoCreate对象,里面包含了MonoSink和一个消费者。Mono的then方法会忽略前面的onNext数据,只会传递给下游完成和错误的信号。then(Mono other)则创建了一个ThenIgnoreMain,并在所有操作完成之后开始下一个流的消费。
Mono和Flux的Create方法创建的对象为MonoCreate和FluxCreate,其中包含了MonoSink或FluxSink和一个消费者。使用using方法可以实现try-with-resource机制,用于包装阻塞API。
在响应式编程中,我们需要处理各种异常情况,确保异常能够传播到需要接收的地方。Publisher分为冷发布者和热发布者,冷发布者在没有订阅者时不会生成数据,而热发布者不论是否有订阅者都会生成数据。冷热发布者可以相互转换,例如使用defer将热操作符转换为冷操作符,或者使用ConnectableFlux将冷操作符转换为热操作符。在多播流中,一个Publisher可以同时给多个消费者提供数据,但只会收到一次的订阅。
FluxPublish对象在publish方法中创建,传入参数包括缓存大小和被包装的队列,这表示了publish方法创建了一个FluxPublish对象。在subscribe阶段,FluxPublish内部的PublishSubscriber会添加到父容器中。在connect方法中,真正订阅数据源,随后PublishSubscriber的onSubscribe方法会执行,根据参数拉取数据,onNext方法处理接收到的数据。
本文通过解析Flux和Mono的在线源码网站源码下载常用API,揭示了它们在响应式编程中的应用和原理,旨在帮助读者更好地理解并运用这些流式操作符。正确处理异常、理解冷热发布者之间的转换以及掌握多播流的特性,对于构建高效、灵活的数据流处理系统至关重要。
CreateCollection API执行流程_milvus源码解析
在分析milvus源码中的CreateCollection API执行流程时,我们需要详细拆解从客户端请求到数据最终存储在etcd的过程。在milvus版本v2.3.2中,CreateCollection API的执行流程大致分为以下几个关键步骤:
首先,客户端SDK接收用户创建集合(collection)的请求,并将此请求封装为createCollectionTask,随后将其放入ddQueue队列。
随后,此任务在proxy内依次执行PreExecute、Execute和PostExecute三个方法。PreExecute阶段进行参数校验等预处理工作,Execute阶段则是真正执行逻辑,而PostExecute阶段完成执行后的清理工作,通常不做任何操作并返回nil。
在Execute方法中,proxy调用rootCoord的CreateCollection接口,此接口进一步封装请求为rootcoord里的createCollectionTask。
接下来,rootCoord的CreateCollection接口执行CreateCollectionTask的Prepare、Execute和NotifyDone方法。核心操作在Execute阶段,其中涉及到多个步骤,包括expireCacheStep、addCollectionMetaStep、watchChannelsStep、changeCollectionStateStep等。在这些步骤中,查看框架源码和页面源码重点是addCollectionMetaStep,负责etcd元数据的操作。
在addCollectionMetaStep的Execute方法中,s.core.meta.AddCollection方法被调用。此方法在etcd中创建了多个与集合相关的key-value对,这些key值按照特定规则构建,反映了集合、分区和字段之间的关系。
具体而言,集合信息通过key `root-coord/database/collection-info/1/` 存储在etcd中,value为protobuf序列化的etcdpb.CollectionInfo,这表示集合由ID、DbId、schema等组成,schema中不记录字段、分区ID或名称等信息。etcd以二进制形式存储这些数据。
分区信息通过类似 `root-coord/partitions//` 的路径存储,value为etcdpb.PartitionInfo,同样采用protobuf序列化后存储在etcd中。此信息包括partitionID、partitionName、collectionId等。
字段信息通过 `root-coord/fields//` 的路径存储,value为schemapb.FieldSchema,包含字段ID、名称、描述、数据类型等信息。
在执行完毕后,将所有key-value对批量写入etcd,最终完成集合的创建。
总结而言,CreateCollection API的执行流程涉及多个组件协作,从客户端请求开始,经过proxy和rootCoord的处理,最终在etcd中存储集合、分区和字段的元数据,实现了集合的创建。整个流程中,etcd作为关键的数据存储层,提供了持久化和高可用性保障。
next.js 源码解析 - API 路由篇
本文深入解析 next.js 的 API 路由实现细节,以清晰的步骤指引,帮助开发者更好地理解此框架如何管理与处理 API 请求。首先,我们确认了源码的位置位于 next.js 的 packages 文件夹中,重点关注与 API 路由相关的组件。
在排查 CLI 源码的过程中,我们注意到启动 API 路由的命令,如 `start` 和 `dev`,其实际操作逻辑位于 `next/dist/bin/next` 文件中。通过分析这一文件,我们得知这些命令最终调用的是 `lib/commands.ts` 文件中的 `start` 和 `dev` 函数。
深入 `lib/commands.ts` 文件,我们发现 `start` 和 `dev` 函数通过 `lib/start-server` 中的 `startServer` 方法实现。在 `startServer` 方法中,`/list=sz...
多个股票: hq.sinajs.cn/list=sh...
然而,去年新浪对协议进行了调整,改动了HTTP头部,需额外添加特定字段,否则访问会被拒绝。详情请参考相关文章:《新浪行情无法接收的解决方法》。
CTPAPI在期货领域广为人知,但在股票市场中可能较少被提及。为了帮助用户更好地理解如何利用此接口接收股票行情,本文提供了一个示例。同时,公开了新浪行情CTPAPI源码地址,用户可访问:/krenx/openctp/tree/master/ctp2Sina行情。
CTPAPI接口版本多样,从6.3.到6.6.7,主要更新包括新增字段或函数,但这些新增内容大多不常使用。交易相关的接口保持稳定。为了确保兼容性和功能完整性,建议使用6.6.7及以上版本。关于接口下载与官方文档,用户可访问openctp主页:github.com/krenx/op...
为方便用户获取更多行情信息,openctp还提供了强大的行情显示工具prices,其源码地址为:github.com/krenx/op...
欲了解更多信息,请访问openctp主页:/krenx/openctp或关注公众号openctp,获取最新动态。CTPAPI相关文章,敬请关注。
驱动I2C驱动分析(四)-关键API解析
在Linux内核源代码中的driver目录下包含一个i2c目录
i2c-core.c这个文件实现了I2C核心的功能以及/proc/bus/i2c*接口。i2c-dev.c实现了I2C适配器设备文件的功能,每一个I2C适配器都被分配一个设备。通过适配器访设备时的主设备号都为,次设备号为0-。I2c-dev.c并没有针对特定的设备而设计,只是提供了通用的read(),write(),和ioctl()等接口,应用层可以借用这些接口访问挂接在适配器上的I2C设备的存储空间或寄存器,并控制I2C设备的工作方式。
busses文件夹这个文件中包含了一些I2C总线的驱动,如针对S3C,S3C,S3C等处理器的I2C控制器驱动为i2c-s3c.c. algos文件夹实现了一些I2C总线适配器的algorithm.
I2C Core
i2c_new_device用于创建一个新的I2C设备,这个函数将会使用info提供的信息建立一个i2c_client并与第一个参数指向的i2c_adapter绑定。返回的参数是一个i2c_client指针。驱动中可以直接使用i2c_client指针和设备通信了。
i2c_device_match 函数根据设备和设备驱动程序之间的不同匹配方式,检查它们之间是否存在匹配关系。这个函数通常在 I2C 子系统的设备驱动程序注册过程中使用,以确定哪个驱动程序适用于给定的设备。
i2c_device_probe 函数执行了 I2C 设备的探测操作。它设置中断信息、处理唤醒功能、设置时钟、关联功耗域,并调用驱动程序的 probe 函数进行设备特定的探测操作。
i2c_device_remove 函数执行了 I2C 设备的移除操作。它调用驱动程序的 remove 函数,并进行功耗域的分离、唤醒中断的清除以及设备唤醒状态的设置。
i2c_register_adapter 函数用于注册一个 I2C 适配器。它进行了一系列的完整性检查和初始化操作,并注册适配器设备。然后,注册与适配器相关的设备节点、ACPI 设备和空间处理器。最后,遍历所有的 I2C 驱动程序,并通知它们有新的适配器注册了。
i2c_add_adapter 函数用于添加一个新的 I2C 适配器。它先尝试从设备树节点中获取适配器的编号,如果成功则使用指定的编号添加适配器。如果没有相关的设备树节点或获取编号失败,函数会在动态范围内分配一个适配器 ID,并将适配器与该 ID 相关联。然后,函数调用 i2c_register_adapter 函数注册适配器,并返回注册函数的返回值。
i2c_detect_address 函数用于检测指定地址上是否存在 I2C 设备,并执行自定义的设备检测函数。它会进行一系列的检查,包括地址的有效性、地址是否已被占用以及地址上是否存在设备。如果检测成功,函数会调用自定义的检测函数并根据检测结果进行相应的处理,包括创建新的设备实例并添加到驱动程序的客户端列表中。
i2c_detect 函数根据给定的适配器和驱动程序,通过遍历地址列表并调用i2c_detect_address函数,检测I2C适配器上连接的设备是否存在。
这段代码是一个用于检测I2C适配器上连接的设备的函数。下面是对代码的详细解释:
I2C device
i2c_dev_init执行了一系列操作,包括注册字符设备、创建设备类、注册总线通知器以及绑定已经存在的适配器。它在初始化过程中处理了可能发生的错误,并返回相应的错误码。
i2cdev_attach_adapter作用是将I2C适配器注册到Linux内核中,以便在系统中使用I2C总线。它会获取一个空闲的struct i2c_dev结构体,然后使用device_create函数创建一个I2C设备,并将其与驱动核心相关联。
i2cdev_open通过次设备号获取对应的i2c_dev结构体和适配器,然后分配并初始化一个i2c_client结构体,最后将其赋值给文件的私有数据。
i2cdev_write函数将用户空间的数据复制到内核空间,并使用i2c_master_send函数将数据发送到之前打开的I2C设备中。
i2cdev_read函数在内核中分配一个缓冲区,使用i2c_master_recv函数从I2C设备中接收数据,并将接收到的数据复制到用户空间。
i2cdev_ioctl
i2c_driver
i2c_register_driver将驱动程序注册到I2C驱动核心,并在注册完成后处理所有已经存在的适配器。注册完成后,驱动核心会调用probe()函数来匹配并初始化所有匹配的但未绑定的设备。
I2C 传输
i2c_transfer用于执行I2C传输操作。它首先检查是否支持主控制器,如果支持,则打印调试信息,尝试对适配器进行锁定,然后调用__i2c_transfer函数执行传输操作,并在完成后解锁适配器并返回传输的结果。如果不支持主控制器,则返回不支持的错误码。
i2c_master_send通过I2C主控制器向从设备发送数据。它构建一个i2c_msg结构,设置消息的地址、标志、长度和缓冲区,并将其传递给i2c_transfer函数执行实际的传输操作。函数的返回值是发送的字节数或错误码,用于指示传输是否成功。
i2c_master_recv通过I2C主控制器从从设备接收数据。它构建一个i2c_msg结构,设置消息的地址、标志、长度和缓冲区,并将其传递给i2c_transfer函数执行实际的传输操作。函数的返回值是接收的字节数或错误码,用于指示传输是否成功。